# Qin Shi Huang‘s National Road System HDU - 4081

## Qin Shi Huang’s National Road System HDU - 4081

During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself “Qin Shi Huang” because “Shi Huang” means “the first emperor” in Chinese. Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.

## Input

The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.

## Output

For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.

## Sample Input

2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40


## Sample Output

65.00
70.00


## Code：

#include <bits/stdc++.h>
#define ll int
#define PI acos(-1)
#define mes(x,y) memset(x,y,sizeof(x))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
using namespace std;
const ll inf = 2e9 + 10;
const ll mod = 1e9 + 7;
const ll MAXN = 2e10 + 10;
ll n, m, i, j, t, w, k, x, y, z;
string s;

/*

*/
double sum, maxn;//最短的路径距离
struct ff {
ll x, y, z;
}po;//未处理的点

struct node {
ll st, en;
double len;
node() {}
node(ll a, ll b, double c) :st(a), en(b), len(c) {}
friend bool operator <(node n1, node n2) {
return n1.len > n2.len;
}
}edge;//存储最短路的边

ll fa;
ll fd(ll x) {
return x == fa[x] ? x : fa[x] = fd(fa[x]);
}//找爸爸

double calculate(ff f1, ff f2) {
return (double)sqrt(pow((f1.x - f2.x), 2) + pow((f1.y - f2.y), 2));
}//计算两点之间距离

vector<vector<ll> >v;//最后可以通过一点寻找自己所在的树上热口最大的点
priority_queue<node>que;
void Kruskal() {
for (i = sum = 0, j = 1; i <= n; i++)fa[i] = i;
while (!que.empty()) {
ll a = fd(que.top().st), b = fd(que.top().en);
if (a != b) {
fa[a] = b; sum += que.top().len;
v[que.top().st].push_back(que.top().en);
v[que.top().en].push_back(que.top().st);
edge[j++] = que.top();
}
que.pop();
}
}

bool mm;//深搜标记
ll dfs(ll x, ll sum) {
mm[x] = false;
sum = max(sum, po[x].z);
for (ll i = 0, j = v[x].size(); i < j; i++)
if (mm[v[x][i]])sum = dfs(v[x][i], sum);
return sum;
}

int main() {
FAST_IO;
while (cin >> k) {
while (k--) {
for (cin >> n, v.clear(), v.resize(n + 1), i = 0; i < n; i++)cin >> po[i].x >> po[i].y >> po[i].z;

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
que.push(node(i, j, calculate(po[i], po[j])));
//将点处理一下，变成线

for (Kruskal(), i = 1, maxn = 0; mes(mm, true), i < n; i++) {
mm[edge[i].st] = mm[edge[i].en] = false;
double A = dfs(edge[i].st, 0) + dfs(edge[i].en, 0);
//找到两棵树的最大人口数量

maxn = max(maxn, A / (sum - edge[i].len));
}
printf("%.2lf\n", maxn);
}
}
}



06-10 589                                                                  05-28 3485
05-12 425
01-29 140
01-20 1万+
11-03 592
01-18 328
04-29 234
02-20 241
08-12 31
07-12 801
01-27 61
07-11 266
08-26 437
08-25 172
09-16 5892
08-06 44
01-17 30
01-06 165
03-24 63