【3D数学】01 - 向量基础

1. 向量的属性

向量拥有两个属性:

  • 方向
  • 长度 - 向量的模: ∥ a ⃗ ∥ \Vert {\vec a} \Vert a
  • 单位向量: a ^ = a ⃗ ∥ a ⃗ ∥ \hat{a} = \cfrac {\vec a} {\Vert {\vec a} \Vert} a^=a a (该方向上的单位向量)

2. 向量的表示方法

screenShot.png

A B → = B − A \overrightarrow{AB} = B - A AB =BA

  • 行向量
    a ⃗ = ( x a , y a , z a ) \vec{a} = \begin{pmatrix} x_a , y_a , z_a \end{pmatrix} a =(xa,ya,za)
     
  • 列向量
    a ⃗ = ( x a y a z a ) \vec{a} = \begin{pmatrix} x_a \\ y_a \\ z_a \\ \end{pmatrix} a =xayaza

NOTE:

  • 行向量表示与列向量表示是有区别的:
    尤其是在矩阵变换中,对于某一种变换来说,行向量表示的矩阵跟列向量表示的矩阵是不同的,二者互为转置
    M r o w = ( x a y a z a x b y b z b x c y c z c ) ⟷ M c o l = ( x a x b x c y a y b y c z a z b z c ) \bold{M_{row}} = \begin{pmatrix} x_a & y_a & z_a \\ \hdashline x_b & y_b & z_b \\ \hdashline x_c & y_c & z_c \end{pmatrix} \longleftrightarrow \bold{M_{col}} = \begin{pmatrix} \begin{array}{c:c:c} x_a & x_b & x_c \\ y_a & y_b & y_c \\ z_a & z_b & z_c \\ \end{array} \end{pmatrix} Mrow=xaxbxcyaybyczazbzcMcol=xayazaxbybzbxcyczc
  • 在对向量进行矩阵变换时,行向量是右乘矩阵,而列向量是左乘矩阵
    • 行向量:
      a r o w ⃗ ⋅ M 1 ⋅ M 2 ⋯ \vec{a_{\sf{row}}} \cdot \bold{M_1} \cdot \bold{M_2} \cdots arow M1M2
    • 列向量:
      ⋯ M 2 ⋅ M 1 ⋅ a c o l ⃗ \cdots \bold{M_2} \cdot \bold{M_1} \cdot \vec{a_{\sf{col}}} M2M1acol

3. 位置与位移

  • 位置

    • 表示的是一种静态的状态;
    • 当用向量表示位置时,此时向量表示的是一个“点”,而该点的坐标就是原点进行向量表示的位移之后所在的地方。即描述 位置 实际上就是描述相对于给定参考点(通常是坐标系的原点)的 位移
  • 位移

    • 表示的是一种动态的过程;
    • 当用向量表示位移时,向量的方向即是位移的方向,向量的长度即是位移的距离。

4. 向量的加减

  • a ⃗ + b ⃗ \vec{a} + \vec{b} a +b
    screenShot.png

 

  • b ⃗ − a ⃗ \vec{b} - \vec{a} b a
    screenShot.png

5. 点乘

5.1 计算方式

a ⃗ ⋅ b ⃗ = ( x a y a z a ) ⋅ ( x b y b z b ) = x a x b + y a y b + z a z b \vec{a} \cdot \vec{b} = \begin{pmatrix} x_a \\ y_a \\ z_a \\ \end{pmatrix} \cdot \begin{pmatrix} x_b \\ y_b \\ z_b \\ \end{pmatrix} = x_a x_b + y_a y_b + z_a z_b a b =xayazaxbybzb=xaxb+yayb+zazb

5.2 几何意义

screenShot.png

可知:
a ⃗ ⋅ b ⃗ = a ⃗ ⋅ b ∥ ⃗ \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b_{\parallel}} a b =a b
b ∥ ⃗ = k ⋅ a ^ = ∥ b ∥ ⃗ ∥ ⋅ a ^ = ∥ b ⃗ ∥ ⋅ cos ⁡ θ ⋅ a ^ \vec{b_{\parallel}} = k \cdot \hat{a} = \Vert \vec{b_{\parallel}} \Vert \cdot \hat{a} = \Vert \vec{b} \Vert \cdot \cos{\theta} \cdot \hat{a} b =ka^=b a^=b cosθa^
a ⃗ ⋅ b ⃗ = ∥ a ⃗ ∥ ∥ b ⃗ ∥ cos ⁡ θ \vec{a} \cdot \vec{b} = \Vert {\vec a} \Vert \Vert {\vec b} \Vert \cos{\theta} a b =a b cosθ

其中:
cos ⁡ θ = a ⃗ ⋅ b ⃗ ∥ a ⃗ ∥ ∥ b ⃗ ∥ \cos{\theta} = \cfrac{\vec{a} \cdot \vec{b}}{\Vert {\vec a} \Vert \Vert {\vec b} \Vert} cosθ=a b a b
cos ⁡ θ = a ^ ⋅ b ^ \cos{\theta} = \hat{a} \cdot \hat{b} cosθ=a^b^

特別地:
b ⃗ = b ∥ ⃗ + b ⊥ ⃗ \vec{b} = \vec{b_{\parallel}} + \vec{b_{\perp}} b =b +b

Note

  • 二维空间下,点乘的计算结果是一个标量
  • b ∥ ⃗ \vec{b_{\parallel}} b 为向量 b ⃗ \vec{b} b 在另一个向量 a ⃗ \vec{a} a 上的投影,可以通过点乘计算出某个向量在另一个向量上的投影;
  • 当向量 b ⃗ \vec{b} b 点乘的对象是某个单位基向量 e ⃗ \vec{e} e 时,其结果直接就是向量 b ⃗ \vec{b} b 在向量 e ⃗ \vec{e} e 上的投影;
    b ∥ ⃗ = e ⃗ ⋅ b ⃗ \vec{b_{\parallel}} = \vec{e} \cdot \vec{b} b =e b
  • 结果中的正负号可判断两条向量方向的 前后关系
  • 可以用來评价 两个向量的方向是否接近,即是否趋于 1。

6. 叉乘

6.1 计算方式

a ⃗ × b ⃗ = ( x a y a z a ) × ( x b y b z b ) = ( y a z b − y b z a z a x b − z b x a x a y b − x b y a ) \vec{a} \times \vec{b} = \begin{pmatrix} x_a \\ y_a \\ z_a \\ \end{pmatrix} \times \begin{pmatrix} x_b \\ y_b \\ z_b \\ \end{pmatrix} = \begin{pmatrix} y_a z_b - y_b z_a \\ z_a x_b - z_b x_a \\ x_a y_b - x_b y_a \\ \end{pmatrix} a ×b =xayaza×xbybzb=yazbybzazaxbzbxaxaybxbya

6.2 几何意义

screenShot.png

a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec{a} \times \vec{b} = - \vec{b} \times \vec{a} a ×b =b ×a

∥ a ⃗ × b ⃗ ∥ = ∥ a ⃗ ∥ ∥ b ⃗ ∥ sin ⁡ ϕ \Vert \vec{a} \times \vec{b} \Vert = \Vert \vec{a} \Vert \Vert \vec{b} \Vert \sin{\phi} a ×b =a b sinϕ

Note

二维空间下:

  • 计算结果理论上是一个向量,结果虽然形式上是一个标量;
  • 其数值的大小表示向量的模,正负号表示向量的方向;(右手螺旋定则)
  • 通过正负号可判断两条向量的左右关系
  • 两条向量的叉乘实质上是两条向量组成矩阵的行列式,其值是该两条向量确定的平行四边形的面积。

三维空间下:

  • 可以通过叉乘计算出任意两条线性无关向量确定的平面的法向量(以右手坐标系为例)

screenShot.png

{ x ⃗ × y ⃗ = + z ⃗ y ⃗ × z ⃗ = + x ⃗ z ⃗ × x ⃗ = + y ⃗ \begin{cases} \vec{x} \times \vec{y} = + \vec{z} \\ \vec{y} \times \vec{z} = + \vec{x} \\ \vec{z} \times \vec{x} = + \vec{y} \end{cases} x ×y =+z y ×z =+x z ×x =+y

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值