关于共轭向量的两个证明

本文介绍了共轭向量的概念,特别是关于对称正定矩阵的共轭向量。证明了当A是n阶对称正定矩阵时,n个非零共轭向量线性无关,并给出了两个关键性质的证明:(1) 对所有x∈Rn,x可以用共轭向量表示;(2) A的逆矩阵可以通过共轭向量表达。证明过程涉及线性表出、正定矩阵性质和共轭向量定义的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于共轭向量的两个证明


陈宝林最优化理论与算法中共轭梯度法所提到的共轭向量概念,两道证明题算是经典的作业题。

定义:设A是 n×n 对称正定矩阵,若 R n R^n Rn中的两个方向 p ( 1 ) p^{(1)} p(1) p ( 2 ) p^{(2)} p(2)满足
p ( 1 ) T A p ( 2 ) = 0 p^{(1)T}Ap^{(2)}=0 p(1)TAp(2)=0
则称这两个方向关于A共轭,或称它们关于A正交。特别地,当A是单位阵时,这两个方向正交。
p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) p^{(n)} p(n) R n R^n Rn中n个方向,它们两两关于A共轭,即满足
p ( i ) T A p ( j ) = 0 , i ≠ j . i , j = 1 , . . . , n p^{(i)T}Ap^{(j)}=0,i\ne j.i,j=1,...,n p(i)TAp(j)=0,i=j.i,j=1,...,n
则称这组方向是A共轭的,或称它们为A的n个共轭方向。

定理:设A是n阶对称正定矩阵, p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) p^{(n)} p(n)是n个A共轭的非零向量,则这个向量组线性无关。

题目:设A为n阶对称正定矩阵,非零向量 p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) ∈ p^{(n)}\in p(n) R n R^n Rn关于矩阵A共轭。证明:

(1) x = ∑ i = 1 n p ( i ) T A x p ( i ) T A p ( i ) p ( i ) , ∀ x=\sum_{i=1}^n\frac{p^{(i)T}Ax}{p^{(i)T}Ap^{(i)}}p^{(i)},\forall x=i=1np(i)TAp(i)p(i)TAxp(i), x ∈ x\in x R n R^n Rn

(2) A − 1 = ∑ i = 1 n p ( i ) p ( i ) T p ( i ) T A p ( i ) A^{-1}=\sum_{i=1}^n\frac{p^{(i)}p^{(i)T}}{p^{(i)T}Ap^{(i)}} A1=i=1np(i)TAp(i)p(i)p(i)T

sol 1:
根据定理, p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) p^{(n)} p(n)线性无关,则对于任意 x ∈ x\in x R n R^n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值