关于共轭向量的两个证明
陈宝林最优化理论与算法中共轭梯度法所提到的共轭向量概念,两道证明题算是经典的作业题。
定义:设A是 n×n 对称正定矩阵,若 R n R^n Rn中的两个方向 p ( 1 ) p^{(1)} p(1)和 p ( 2 ) p^{(2)} p(2)满足
p ( 1 ) T A p ( 2 ) = 0 p^{(1)T}Ap^{(2)}=0 p(1)TAp(2)=0
则称这两个方向关于A共轭,或称它们关于A正交。特别地,当A是单位阵时,这两个方向正交。
若 p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) p^{(n)} p(n)是 R n R^n Rn中n个方向,它们两两关于A共轭,即满足
p ( i ) T A p ( j ) = 0 , i ≠ j . i , j = 1 , . . . , n p^{(i)T}Ap^{(j)}=0,i\ne j.i,j=1,...,n p(i)TAp(j)=0,i=j.i,j=1,...,n
则称这组方向是A共轭的,或称它们为A的n个共轭方向。
定理:设A是n阶对称正定矩阵, p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) p^{(n)} p(n)是n个A共轭的非零向量,则这个向量组线性无关。
题目:设A为n阶对称正定矩阵,非零向量 p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) ∈ p^{(n)}\in p(n)∈ R n R^n Rn关于矩阵A共轭。证明:
(1) x = ∑ i = 1 n p ( i ) T A x p ( i ) T A p ( i ) p ( i ) , ∀ x=\sum_{i=1}^n\frac{p^{(i)T}Ax}{p^{(i)T}Ap^{(i)}}p^{(i)},\forall x=∑i=1np(i)TAp(i)p(i)TAxp(i),∀ x ∈ x\in x∈ R n R^n Rn
(2) A − 1 = ∑ i = 1 n p ( i ) p ( i ) T p ( i ) T A p ( i ) A^{-1}=\sum_{i=1}^n\frac{p^{(i)}p^{(i)T}}{p^{(i)T}Ap^{(i)}} A−1=∑i=1np(i)TAp(i)p(i)p(i)T
sol 1:
根据定理, p ( 1 ) p^{(1)} p(1), p ( 2 ) p^{(2)} p(2), …, p ( n ) p^{(n)} p(n)线性无关,则对于任意 x ∈ x\in x∈ R n R^n