从伯努利分布到多项式分布

1. 伯努利分布(bernouli distribution)

伯努利分布(Bernoulli distribution)又名 两点分布0-1分布,在讲伯努利分布前首先需要介绍伯努利试验(Bernoulli Trial)

1.1 伯努利试验 (抛一次硬币)

伯努利试验是只有两种可能结果的单词随机试验,即对于一个随机变量X:
在这里插入图片描述
因为只有两种可能结果,伯努利试验都可以表示为“是”或“否”的问题。如果试验 E 是一个伯努利试验,将 E 独立重复地进行 n 次,则将这一系列重复的独立试验称为是 n 重伯努利试验,这时你可能会联想到逻辑回归,逻辑回归中,你可以理解成每一个样本是一个伯努利分布,由它固定的参数(预测值,随权重矩阵W的变化而变化),n重就代表它有n个样本

1.2 伯努利分布

在这里插入图片描述
伯努利分布的期望与方差公式推导

2. 二项分布(抛n次硬币)

2.1 二项定理

二项定理是由牛顿-莱布尼茨发明的,解决了两个数相加的n次方问题,使用了排列组合即:
在这里插入图片描述

2.2 二项式分布(Binomial Distribution)

在这里插入图片描述
期望:np
方差:np(1-p)
二项分布的期望与方差求解

3. 多项式分布(Multinomial Distribution,抛n次骰子)

3.1 多项式定理

在这里插入图片描述

3.2 多项式分布

在这里插入图片描述
多项式分布的期望与方差:
在这里插入图片描述
在这里插入图片描述

4. 多类别分布(Categorical Distribution,抛一次骰子)

理解了第三节,本节自然而然就理解了。将第3节的n置为1即只做一次实验,这里你可以联想到激活函数softmax,没错,就是它!

5. 总结

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

InceptionZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值