图解常用的几种深度学习评价指标

本文详细介绍了深度学习中常见的评价指标,包括准确率、混淆矩阵、精确率、召回率、平均正确率(AP)、mean Average Precision(mAP)、交除并(IoU)以及ROC和AUC曲线,帮助理解模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习常用的评价指标

常用的评价指标包括:

准确率 (Accuracy)
混淆矩阵 (Confusion Matrix)
精确率(Precision)
召回率(Recall)
平均正确率(AP)
mean Average Precision(mAP)
交除并(IoU)
ROC + AUC

评价基础评价的基础
混淆矩阵在这里插入图片描述
准确率、精确率、召回率在这里插入图片描述
auc曲线在这里插入图片描述
假正确率、正正确率请添加图片描述
ROC曲线在这里插入图片描述
交并比
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值