using evo for visualization of SLAM trajectories

You can use evo for 2D and 3D visualization of SLAM trajectories, especially if you’re handling data in formats commonly used in robotics and SLAM, such as TUM, KITTI, or Euroc. Evo is a popular Python tool for the evaluation and comparison of SLAM systems that provides several utilities for visualizing and analyzing the performance of trajectories.

What is Evo?

Evo (short for “evaluation”) is specifically designed for the purpose of SLAM analysis and is well-suited for handling, comparing, and visualizing trajectory data. It supports different metrics like Absolute Trajectory Error (ATE) and Relative Pose Error (RPE), among others.

How to Use Evo for 2D Trajectory Visualization

Here’s a basic guide on how to use evo for visualizing 2D trajectories:

Step 1: Install Evo

If you haven’t installed

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值