You can use evo for 2D and 3D visualization of SLAM trajectories, especially if you’re handling data in formats commonly used in robotics and SLAM, such as TUM, KITTI, or Euroc. Evo is a popular Python tool for the evaluation and comparison of SLAM systems that provides several utilities for visualizing and analyzing the performance of trajectories.
What is Evo?
Evo (short for “evaluation”) is specifically designed for the purpose of SLAM analysis and is well-suited for handling, comparing, and visualizing trajectory data. It supports different metrics like Absolute Trajectory Error (ATE) and Relative Pose Error (RPE), among others.
How to Use Evo for 2D Trajectory Visualization
Here’s a basic guide on how to use evo for visualizing 2D trajectories:
Step 1: Install Evo
If you haven’t installed