yolo中标签的格式

yolo格式的标签储存在txt标记文件中,标记文件文件名(不包含后缀)与图像的文件名一致,有着一一对应的关系,当图片中不存在物体时,可以不存在对应的txt文件
每个txt标记文件中包含0到多行,每一行代表图片中的一个已标注物体的信息,具体格式为 class_id x y w h,分别代表物体类别(从0开始计数),标记框中心点的横纵坐标(x, y),标记框宽高的大小(w, h),且都是归一化后的值,图片左上角为坐标原点。
参考https://zhuanlan.zhihu.com/p/618324969

JSON转换为YOLO格式标签需要经过以下步骤: 1. 将JSON文件加载到Python。 2. 对于每个图像,将其宽度和高度读入。 3. 对于每个对象,将其类别ID转换为YOLO格式。 4. 计算每个对象的心点坐标和宽度高度。 5. 将所有对象的YOLO格式标签写入一个文本文件。 下面是一个示例Python代码来实现这个转换: ``` import json # 加载JSON文件 with open('annotations.json', 'r') as f: data = json.load(f) # 获取图像宽度和高度 width, height = data['imageWidth'], data['imageHeight'] # 转换每个对象的类别ID为YOLO格式 class_map = {'cat': 0, 'dog': 1} # 假设类别ID为0和1 yolo_labels = [] for obj in data['annotations']: class_id = class_map[obj['label']] x_min, y_min, x_max, y_max = obj['BoundingBox'] x_center = (x_min + x_max) / 2 / width y_center = (y_min + y_max) / 2 / height w = (x_max - x_min) / width h = (y_max - y_min) / height yolo_labels.append(f"{class_id} {x_center:.6f} {y_center:.6f} {w:.6f} {h:.6f}") # 写入YOLO格式标签文件 with open('labels.txt', 'w') as f: f.write('\n'.join(yolo_labels)) ``` 在这个例子,我们假设JSON文件包含一个名为`annotations.json`的图像注释文件,其类别ID为`cat`和`dog`。我们还假设图像的宽度和高度可以在JSON文件找到,并且我们将YOLO格式标签写入名为`labels.txt`的文件。最后,我们使用`join()`方法将所有标签连接为单个字符串,并将其写入文件
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值