用劳斯判据计算系统几个精确的虚轴交点
vpa函数控制精度
format long
syms K
s51=1;
s52=39;
s53=2*K+24;
s41=11.4;
s42=K+43.6;
s43=4*K;
s31=-det([s51,s52;s41,s42])/s41;
s32=-det([s51,s53;s41,s43])/s41;
s21=-det([s41,s42;s31,s32])/s31;
s22=-det([s41,s43;s31,0])/s31;
s11=-det([s31,s32;s21,s22])/s21;
R=vpa(s11)
a=solve(R,K)
R=subs(s11,a(1));
vpa(R)
R=subs(s11,a(2));
vpa(R)
R=subs(s11,a(3));
vpa(R)
num=[1,2,4]; %开环传函分子多项式系数
den=conv(conv([1,4,0],[1,6]),[1,1.4,1]); %开环传函分母多项式系数
sys=tf(num,den); %系统传递函数模型
rlocus(sys); %绘制系统的根轨迹图
axis([-8 2 -6 6]); %设定坐标范围为:实轴[-8,2],虚轴[-6,6]
结果
R =
-(0.08*(0.087719298245614035087719298245614*K - 35.175438596491228070175438596491)*(25.0*K^3 - 6167.0*K^2 + 366232.0*K - 4309368.0))/((K - 401.0)*(- 0.087719298245614035087719298245614*K^2 + 12.550877192982456140350877192982*K + 1260.049122807017543859649122807))
a =
15.610621364406734484497350284298
67.512600498704510212141489042683
163.55677813688875530336116067302
ans =
0.0
ans =
0.0
ans =
-1.7903520164540579559201249903453e-37
视频里面给的是:
15.6
67.5
168.6
参考:
https://www.icourse163.org/course/XJTU-46018
https://blog.csdn.net/xiaopikadi/article/details/86266852
https://blog.csdn.net/Reborn_Lee/article/details/87371080