用劳斯判据计算系统几个精确的虚轴交点

该博客探讨了控制系统稳定性分析中的根轨迹法,使用劳斯判据计算了系统虚轴交点,并通过MATLAB的rlocus函数绘制了根轨迹图。博主给出了精确的虚轴交点解,并对比了视频教程中的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用劳斯判据计算系统几个精确的虚轴交点
在这里插入图片描述
vpa函数控制精度

format long
syms K
s51=1;
s52=39;
s53=2*K+24;
s41=11.4;
s42=K+43.6;
s43=4*K;
s31=-det([s51,s52;s41,s42])/s41;
s32=-det([s51,s53;s41,s43])/s41;
s21=-det([s41,s42;s31,s32])/s31;
s22=-det([s41,s43;s31,0])/s31;
s11=-det([s31,s32;s21,s22])/s21;
R=vpa(s11)
a=solve(R,K)
R=subs(s11,a(1));
vpa(R)
R=subs(s11,a(2));
vpa(R)
R=subs(s11,a(3));
vpa(R)


num=[1,2,4];                             %开环传函分子多项式系数
den=conv(conv([1,4,0],[1,6]),[1,1.4,1]); %开环传函分母多项式系数
sys=tf(num,den);                         %系统传递函数模型
rlocus(sys);                             %绘制系统的根轨迹图
axis([-8 2 -6 6]);                       %设定坐标范围为:实轴[-8,2],虚轴[-6,6]

结果

R =
 
-(0.08*(0.087719298245614035087719298245614*K - 35.175438596491228070175438596491)*(25.0*K^3 - 6167.0*K^2 + 366232.0*K - 4309368.0))/((K - 401.0)*(- 0.087719298245614035087719298245614*K^2 + 12.550877192982456140350877192982*K + 1260.049122807017543859649122807))
 
 
a =
 
 15.610621364406734484497350284298
 67.512600498704510212141489042683
 163.55677813688875530336116067302
 
 
ans =
 
0.0
 
 
ans =
 
0.0
 
 
ans =
 
-1.7903520164540579559201249903453e-37

视频里面给的是:
15.6
67.5
168.6
在这里插入图片描述

参考:
https://www.icourse163.org/course/XJTU-46018
https://blog.csdn.net/xiaopikadi/article/details/86266852
https://blog.csdn.net/Reborn_Lee/article/details/87371080

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值