分析状态方程的解

齐次状态方程
x ˙ ( t ) = A x ( t ) \dot x(t)=Ax(t) x˙(t)=Ax(t)
非齐次状态方程
x ˙ ( t ) = A x ( t ) + B u ( t ) \dot x(t)=Ax(t)+Bu(t) x˙(t)=Ax(t)+Bu(t)

齐次状态方程的解
x ( t ) = e A ( t − t 0 ) x ( t 0 ) x(t)=e^{A(t-t_0)}x(t_0) x(t)=eA(tt0)x(t0)
非齐次状态方程的解
x ( t ) = e A ( t − t 0 ) x ( t 0 ) + ∫ t 0 t e A ( t − τ ) B u ( τ ) d τ x(t)=e^{A(t-t_0)}x(t_0)+\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau x(t)=eA(tt0)x(t0)+t0teA(tτ)Bu(τ)dτ

举一个例子
x ˙ ( t ) = [ 0 1 − 2 − 3 ] x ( t ) + [ 0 1 ] u ( t ) \dot x(t)= \left[ \begin{matrix} 0 & 1 \\ -2 & -3 \\ \end{matrix} \right] x(t)+ \left[ \begin{matrix} 0\\ 1\\ \end{matrix} \right] u(t) x˙(t)=[0213]x(t)+[01]u(t)
u(t)=[1,1]
先求出指数函数矩阵

syms t
A=[0 1;-2 -3];
expm(A*t)
ans =
 
[  2*exp(-t) - exp(-2*t),   exp(-t) - exp(-2*t)]
[2*exp(-2*t) - 2*exp(-t), 2*exp(-2*t) - exp(-t)]

齐次状态方程的解为:
x ( t ) = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t 2 e − 2 t − e − t ] x ( 0 ) x(t)= \left[ \begin{matrix} 2e^{-t}-e^{-2t} &e^{-t}-e^{-2t}\\ -2e^{-t}+2e^{-2t}&2e^{-2t}-e^{-t} \end{matrix} \right] x(0) x(t)=[2ete2t2et+2e2tete2t2e2tet]x(0)
如果我们给初始条件
x ( 0 ) = [ 1 , 1 ] T x(0)=[1,1]^T x(0)=[1,1]T
可以求出方程的解为
x ( t ) = [ 3 e − t − 2 e − 2 t − 3 e − t + 4 e − 2 t ] x(t)=\left[ \begin{matrix} 3e^{-t}-2e^{-2t} \\ -3e^{-t}+4e^{-2t} \end{matrix} \right] x(t)=[3et2e2t3et+4e2t]
我们甚至可以用matlab画出这个解

%%
syms t
A=[0 1;-2 -3];
eA1=expm(A*t);
x = eA*[1;1];
figure
fplot(x)
legend('$3e^{-t}-2e^{-2t}$','$-3e^{-t}+4e^{-2t}$','Interpreter','latex','FontSize',15)
xlim([-1,2])
grid on

在这里插入图片描述
如果我们给初始条件
x ( 1 ) = [ 1 , 1 ] T x(1)=[1,1]^T x(1)=[1,1]T
思路一:
直接代齐次方程的解的公式
x ( t ) = [ 2 e − ( t − 1 ) − e − 2 ( t − 1 ) e − ( t − 1 ) − e − 2 ( t − 1 ) − 2 e − ( t − 1 ) + 2 e − 2 ( t − 1 ) 2 e − 2 ( t − 1 ) − e − ( t − 1 ) ] x ( 1 ) x(t)= \left[ \begin{matrix} 2e^{-(t-1)}-e^{-2(t-1)} &e^{-(t-1)}-e^{-2(t-1)}\\ -2e^{-(t-1)}+2e^{-2(t-1)}&2e^{-2(t-1)}-e^{-(t-1)} \end{matrix} \right] x(1) x(t)=[2e(t1)e2(t1)2e(t1)+2e2(t1)e(t1)e2(t1)2e2(t1)e(t1)]x(1)

eA2=subs(eA1,t,t-1);
ans =
 
[  2*exp(1 - t) - exp(2 - 2*t),   exp(1 - t) - exp(2 - 2*t)]
[2*exp(2 - 2*t) - 2*exp(1 - t), 2*exp(2 - 2*t) - exp(1 - t)]

x ( t ) = [ 3 e − ( t − 1 ) − 2 e − 2 ( t − 1 ) 4 e − ( t − 1 ) − 3 e − 2 ( t − 1 ) ] x(t)= \left[ \begin{matrix} 3e^{-(t-1)}-2e^{-2(t-1)} \\ 4e^{-(t-1)}-3e^{-2(t-1)} \end{matrix} \right] x(t)=[3e(t1)2e2(t1)4e(t1)3e2(t1)]
在这里插入图片描述
可以看出后面的图像是前面图像向右平移1个单位得到的
再来看非齐次方程

syms tau t
A=[0 1;-2 -3];
u=1;
B=[0;1];
% 第一个解
t0=0;
x0=[1;1];
xt3=expm(A*(t-t0))*x0+int(expm(A*(t-tau))*B*u,tau,t0,t);
figure
fplot(xt3)
xlim([-1,2])
grid on
% 第二个解
t1=1;
x1=[1;1];
xt4=expm(A*(t-t1))*x1+int(expm(A*(t-tau))*B*u,tau,t1,t);
figure
fplot(xt4)
xlim([0,3])
grid on

在这里插入图片描述
在这里插入图片描述
第一个解
x ( t ) = [ 1 2 + 2 e − t − 3 2 e − 2 t − 2 e − t − 3 e − 2 t ] x(t)=\left[ \begin{matrix} \frac{1}{2}+2e^{-t}-\frac{3}{2}e^{-2t}\\ -2e^{-t}-3e^{-2t} \end{matrix} \right] x(t)=[21+2et23e2t2et3e2t]
第二个解
x ( t ) = [ 1 2 + 2 e − ( t − 1 ) − 3 2 e − 2 ( t − 1 ) − 2 e − ( t − 1 ) − 3 e − 2 ( t − 1 ) ] x(t)=\left[ \begin{matrix} \frac{1}{2}+2e^{-(t-1)}-\frac{3}{2}e^{-2(t-1)}\\ -2e^{-(t-1)}-3e^{-2(t-1)} \end{matrix} \right] x(t)=[21+2e(t1)23e2(t1)2e(t1)3e2(t1)]
所谓状态转移就是这个意思

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值