三大变换 公式总结

三大变换

傅里叶变换、拉普拉斯变换、Z变换

1. 傅里叶变换

2. 拉普拉斯变换

F ( s ) = L [ f ( t ) ] = ∫ 0 ∞ f ( t ) e − s t d t F(s) = L[f(t)] = \int_0^\infty f(t)e^{-st}dt F(s)=L[f(t)]=0f(t)estdt
s = σ + j ω s = \sigma+j\omega s=σ+jω 复变量
将实数域上的实变函数变成复数域上的复变函数

一.经典函数的拉式变换

  1. 单位阶跃函数(1函数)
    1 ( t ) = { 1 , t < 0 0 , t ≥ 0 1(t) = \left \{\begin{array}{cc} 1, & t<0\\ 0, & t\ge0 \end{array}\right. 1(t)={1,0,t<0t0
    L [ 1 ( t ) ] = ∫ 0 ∞ 1 ( t ) e − s t d t = 1 s L[1(t)] =\int_0^\infty 1(t)e^{-st}dt =\frac{1}{s} L[1(t)]=01(t)estdt=s1

  2. 单位脉冲函数
    δ ( t ) = { ∞ , t = 0 0 , t ≠ 0 \delta(t) = \left \{\begin{array}{cc} \infty, & t=0\\ 0, & t\neq0 \end{array}\right. δ(t)={,0,t=0t=0
    单位脉冲函数满足
    1) ∫ 0 ∞ δ ( t ) d t = 1 \int^\infty_0 \delta(t)dt = 1 0δ(t)dt=1
    2) L [ δ ( t ) ] = ∫ − ∞ ∞ δ ( t ) e − s t d t = 1 L[\delta(t)] = \int^\infty_{-\infty} \delta(t)e^{-st}dt = 1 L[δ(t)]=δ(t)estdt=1
    根据2)可得
    L [ 1 ( t ) ] = ∫ 0 ∞ δ ( t ) e − s t d t = 1 L[1(t)] =\int_0^\infty \delta(t)e^{-st}dt =1 L[1(t)]=0δ(t)estdt=1

  3. 单位斜坡函数
    f ( t ) = { 0 t < 0 t t ≥ 0 f(t)= \left\{\begin{array}{cc} 0&t<0\\ t&t\geq0 \end{array} \right. f(t)={0tt<0t0
    L [ f ( t ) ] = 1 s 2 L[f(t)] =\frac{1}{s^2} L[f(t)]=s21

  4. 指数函数
    f ( t ) = A e − a t , t ≥ 0 f(t)=Ae^{-at},t\geq0 f(t)=Aeat,t0
    L [ f ( t ) ] = A s + a L[f(t)] =\frac{A}{s+a} L[f(t)]=s+aA

  5. 正余弦函数
    (推到需要欧拉公式和指数函数变换)
    L [ sin ⁡ ω t ] = ω s 2 + ω 2 L[\sin \omega t] = \frac{\omega}{s^2+\omega^2} L[sinωt]=s2+ω2ω
    L [ cos ⁡ ω t ] = s s 2 + ω 2 L[\cos \omega t] = \frac{s}{s^2+\omega^2} L[cosωt]=s2+ω2s

二.拉氏变换定理

L [ f ( t ) ] = F ( s ) L[f(t)] = F(s) L[f(t)]=F(s) 则:

  1. 线性定理
    L [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( s ) + β F 2 ( s ) L[\alpha f_1(t)+\beta f_2(t)] = \alpha F_1(s) +\beta F_2(s) L[αf1(t)+βf2(t)]=αF1(s)+βF2(s)
  2. 位移定理
    L [ e − a t f ( t ) ] = F ( s + a ) L[e^{-at}f(t)] = F(s+a) L[eatf(t)]=F(s+a)
  3. 微分定理
    L [ d f ( t ) d t ] = s F ( s ) − f ( 0 ) L[\frac {df(t)}{dt}] = sF(s)-f(0) L[dtdf(t)]=sF(s)f(0)
  4. 积分定理
    L [ ∫ f ( t ) d t ] = F ( s ) s + ∫ f ( 0 ) d t s L[\int f(t){dt}] = \frac{F(s)}{s}+ \frac{\int f(0){dt}}{s} L[f(t)dt]=sF(s)+sf(0)dt
  5. 终值定理 (要求极限存在)
    lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim_{t\rightarrow \infty} f(t) = \lim_{s\rightarrow 0}sF(s) tlimf(t)=s0limsF(s)
  6. 初值定理
    lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s F ( s ) \lim_{t\rightarrow 0} f(t) = \lim_{s\rightarrow \infty}sF(s) t0limf(t)=slimsF(s)
  7. 卷积定理
    L [ ∫ 0 ∞ f 1 ( t − τ ) ⋅ f 2 ( τ ) d τ ] = F 1 ( s ) ⋅ F 2 ( s ) L[\int^\infty_0f_1(t-\tau)\cdot f_2(\tau) d\tau]=F_1(s)\cdot F_2(s) L[0f1(tτ)f2(τ)dτ]=F1(s)F2(s)

二.拉氏反变换

L − 1 [ F ( s ) ] = f ( t ) L^{-1}[F(s)]=f(t) L1[F(s)]=f(t)
部分分式展开法:
F ( s ) = A ( s ) B ( s ) = A ( s ) ( s + p 1 ) ( s + p 2 ) ⋯ ( s + p n ) F(s)=\frac{A(s)}{B(s)}=\frac{A(s)}{(s+p_1)(s+p_2)\cdots(s+p_n)} F(s)=B(s)A(s)=(s+p1)(s+p2)(s+pn)A(s)
p 1 , p 2 , ⋯   , p n 为 B ( s ) 的 根 , 又 称 F ( s ) 的 极 点 p_1,p_2,\cdots,p_n为B(s)的根,又称F(s)的极点 p1,p2,,pnB(s)F(s)

  1. 无重根
    F ( s ) = A ( s ) ( s + p 1 ) ( s + p 2 ) ⋯ ( s + p n ) = α 1 s + p 1 + α 2 s + p 2 + ⋯ + α n s + p n F(s)=\frac{A(s)}{(s+p_1)(s+p_2)\cdots(s+p_n)}= \frac{\alpha_1}{s+p_1}+\frac{\alpha_2}{s+p_2}+\cdots+\frac{\alpha_n}{s+p_n} F(s)=(s+p1)(s+p2)(s+pn)A(s)=s+p1α1+s+p2α2++s+pnαn
    α k 为 s = − p k 处 的 留 数 \alpha_k为s=-p_k处的留数 αks=pk
    α k 求 解 办 法 : 等 式 两 边 × ( s + p k ) , 再 带 入 s = − p k 即 \alpha_k求解办法:等式两边×(s+p_k), 再带入s=-p_k即 αk×(s+pk),s=pk
    α k = [ ( s + p k ) A ( s ) B ( s ) ] s = − p k \alpha_k=\left[(s+p_k)\frac{A(s)}{B(s)}\right]_{s=-p_k} αk=[(s+pk)B(s)A(s)]s=pk
  2. 有重根
    F ( s ) = A ( s ) ( s + p 1 ) 3 ( s + p 2 ) ⋯ ( s + p n ) = α 1 ( s + p 1 ) 3 + α 1 ( s + p 1 ) 2 + α 1 ( s + p 1 ) 1 + α 1 s + p 2 + ⋯ + α n s + p n F(s)=\frac{A(s)}{(s+p_1)^3(s+p_2)\cdots(s+p_n)}= \frac{\alpha_1}{(s+p_1)^3}+\frac{\alpha_1}{(s+p_1)^2}+\frac{\alpha_1}{(s+p_1)^1}+\frac{\alpha_1}{s+p_2}+\cdots+\frac{\alpha_n}{s+p_n} F(s)=(s+p1)3(s+p2)(s+pn)A(s)=(s+p1)3α1+(s+p1)2α1+(s+p1)1α1+s+p2α1++s+pnαn

3. Z变换

f ( t ) = { f(t)= \left\{\begin{array}{cc} \end{array} \right. f(t)={

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值