词云图作为一种分析热度的可视化图,在数据分析占据重要地位,只一眼就可以看出某个事物的重要性。pyecharts和WordCloud都是比较方便的可视化库,当遇上词云图,会有怎样的火花呢?我们来期待一下。
1.pyecharts
1.导入包
首先保证自己电脑安装上了pyecharts包,关于包的安装就不多说,来来去去就那几种方法,网上已经说的太多了。
from pyecharts.charts import WordCloud
2.数据准备
用pyecharts画词云时,待分析数据中的每一个词为应该为(word,value)的元组形式,所有词组成一个列表。其中,word为我们需要在词云图中显示的词汇,value是对应的频率。在实现操作中,我将word和value分别形成列表进行输入,结果发现参数个数错误,而使用(word,value)的形式就正确。
word=[("数学分析",0.9),("高等代数",0.9),("近世代数",0.6),("计算机网络",0.8),("现代密码学",0.5),
("c程序设计",0.8),("数据结构与算法",0.9),("泛函分析",0.8),("机器学习实战",1.0),("数据挖掘导论",0.9)]
3.词云图生成
pyecharts中,主要使用add()函数来生成并设置词云图:
mywordcloud=WordCloud