【统计学】参数检验:单样本t检验、独立样本t检验、配对样本t检验

数据的参数检验

统计学干什么的?从未知总体里抽部分随机样本,用样本数据去推断总体分布情况。
什么是参数检验?用总体依赖的参数(如均值、方差)去推断总体分布特征。通过参数估计来比较样本和总体的参数(一般指均值)之间是否有显著差异。如果差异显著,则样本参数不能代表总体特征(小概率事件,推翻原假设);如果差异不显著,则不推翻原假设。
————————————————————————
t检验是对均值进行参数检验,前提有两个:数据服从正态分布,方差齐性(这两个前提要分别进行正态性检验和方差齐性检验——F检验)。
如果不满足这两个条件,可以用非参数检验代替t检验进行均值比较

1.单样本t检验

使用场景:一个总体均值和一个指定指标之间的差异
检验对象:总体的均值

思路:

  • 提出假设:原假设 H 0 H_0 H0(反证法,一般把试图推翻的假设作为原假设)
  • 选择检验统计量 T T T:评价一个总体中小样本平均数之间的差异程度。(每个检验选择的统计量不一样)
  • 计算检验统计量观测值和概率 p p p值:用统计量 T T T计算出统计量观测值, p p p为统计量观测值的双尾概率。
  • 设定显著性水平 α = 0.05 \alpha=0.05 α=0.05,然后与
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值