NSCaching: Simple and Efficient NegativeSampling for Knowledge Graph Embedding

摘要

知识图嵌入是数据挖掘研究中的一个基本问题,在现实世界中有着广泛的应用。它的目的是将图中的实体和关系编码到低维向量空间中,以便后续算法使用。负抽样,即从训练数据中未观察到的负三元组中抽取负三元组,是KG嵌入的重要步骤。近年来,生成对抗网络(GAN)被引入到负采样中。这些方法通过对分数较大的负三元组进行采样,避免了梯度消失的问题,从而获得了更好的性能。然而,使用GAN会使原始模型变得更加复杂和难以训练,因此必须使用强化学习。在本文中,由于观察到具有大分数的负三元组很重要但很少见,我们提出使用缓存直接跟踪它们。然而,如何从缓存中采样和更新缓存是两个重要的问题。我们精心设计了解决方案,不仅效率高,而且在勘探和开采之间取得了良好的平衡。通过这种方式,我们的方法作为先前基于gan的方法的“提炼”版本,它不会浪费训练时间在附加参数上以拟合负三元组的完整分布。大量的实验表明,我们的方法可以在各种KG嵌入模型上获得显著的改进,并且优于基于GAN的最先进的负采样方法。

1.介绍

均匀采样因其简单、高效而被广泛应用于KG嵌入中[40]。然而,这是一个固定的方案,忽略了训练过程中负三元组分布的变化。因此,它严重地受到梯度消失问题的困扰。具体而言,如文献[39]所观察到的,样本集中大多数阴性三胞胎都是易于分类的三胞胎。由于评分函数倾向于给观察到的(正的)三元组很大的值,随着训练的进行,大多数未观察到的(可能是负的)三元组的分数(从评分函数中评估)变得更小。因此,当负三元组被均匀采样时,我们很可能会选择一个梯度为零的三元组。因此,KG嵌入的训练过程将受到这种消失梯度的阻碍,而不是优化算法的阻碍。这样的问题阻碍了KG嵌入获得理想的性能。一种更好的抽样方案,即伯努利抽样,在[42]中被引入。通过考虑头尾之间的一对多、多对多和多对一的映射关系,改进了均匀采样。然而,它仍然是一个固定的采样方案,受到梯度消失的影响。

因此,高质量的负三胞胎应该有较大的分数。为了在训练过程中有效地捕获它们,我们对负采样有两个主要挑战:(i)如何捕获和建模负三联体的动态分布?(ii)我们如何以一种有效的方式对负三联体进行采样?最近,有两个开创性的作品,即IGAN[39]和KBGAN[9],试图解决这些挑战。他们的想法都是用生成对抗网络(GAN)取代固定的采样方案[16]。然而,基于gan的解决方案仍然存在许多问题。首先,由于引入了一个额外的生成器,GAN增加了训练参数的数量。其次,GAN训练可能存在不稳定性和退化性[1],[18],并且已知IGAN和KBGAN中使用的强化梯度[44]具有高方差。这些缺点导致不同评分函数的性能不稳定,因此对于IGAN和KBGAN都必须进行预训练。

在本文中,为了解决高质量负采样的挑战,同时避免使用GAN带来的问题,我们提出了一种新的基于缓存的负采样方法,称为NSCaching通过实证研究负样本的得分分布,我们发现得分分布是高度偏态的,即只有少数负三胞胎得分大,其余的都是无用的。这一观察结果促使我们在训练过程中只维护高质量的负三联体,并动态更新所维护的三联体。首先,我们将高质量的负三元组存储在缓存中,然后设计重要性采样(IS)策略来更新缓存。IS策略既能捕捉到分布的动态特征,又能提高nscing的效率。此外,我们还很注意“探索和开发”,它平衡了探索所有可能的高质量负三联体和从缓存中的几个大分数负三联体中采样。我们的工作贡献总结如下:

  1. 我们提出了一种简单有效的负采样方案——NSCaching。它是一种通用的负抽样方案,可以注入到所有常用的KG嵌入模型中。与IGAN和KBGAN相比,nscach具有更少的参数,并且可以像原始的KG嵌入模型一样使用梯度下降进行训练。
  2. 在NSCaching中,我们提出了统一的缓存采样策略和IS策略来更新缓存,同时要注意“探索和开发”。
  3. 我们分析了NSCaching与self-paced learning之间的联系[3],[24]。我们证明NSCaching可以先学习容易分类的样本,然后逐渐切换到更难分类的样本。
  4. 我们对四个流行的数据集WN18和FB15K,以及它们的变体WN18RR和FB15K237进行了实验。实验结果表明,我们的方法是非常有效的,并且比目前最先进的方法,即IGAN和KBGAN更有效。

III. PROPOSED MODEL

在本节中,我们首先描述我们在第III-A节中的关键观察结果,这些观察结果被现有作品所忽略,但却是我们工作的主要动机。在第III-B节中描述了所提出的方法,其中我们展示了如何通过缓存解决负采样中的挑战。最后,我们在Section III-C中展示了NSCaching和self-pace learning之间有趣的联系[24],这进一步解释了良好的性能。

A. Closer Look at Distribution of Negative Triplets

•阴性三胞胎的得分分布高度倾斜。

•无论训练(图1(a))和正三胞胎的选择(图1(b))如何,只有少数负三胞胎得分高。

  • 21
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 知识图谱嵌入是一种将知识图谱中的实体和关系映射到低维向量空间中的技术。它可以帮助我们更好地理解和利用知识图谱中的信息,例如实体之间的相似性和关系的强度。知识图谱嵌入在自然语言处理、推荐系统、问答系统等领域有着广泛的应用。 ### 回答2: 知识图谱嵌入(Knowledge Graph Embedding)是指将知识图谱中的实体和关系表示为低维向量的过程,从而方便计算机进行数据处理和分析。通常情况下,知识图谱以三元组的形式呈现,即(头实体,关系,尾实体)。但是,这种表示方式存在一些问题,如数据稀疏性、无法进行复杂的语义推理和不适合用于大规模机器学习等问题。 知识图谱嵌入方法通过将实体和关系嵌入到低维向量中,使得实体之间和关系之间的相似度可以被量化,方便计算机进行数据处理和分析。常用的嵌入方法有TransE、TransR、TransH等等,这些方法可以将实体和关系嵌入到低维向量空间中,并保持一定的语义一致性和结构一致性,从而实现对实体和关系的推断和理解。 知识图谱嵌入技术可以应用于许多领域,如自然语言处理、推荐系统、问答系统等等。例如,在自然语言处理中,可以将实体和关系嵌入到低维向量空间中,从而实现对于实体关系的理解和推断,提高问答系统的准确性;在推荐系统中,可以将用户和商品嵌入到低维向量空间中,从而实现对于用户和商品之间的相似度计算,提高推荐系统的效果。 总之,知识图谱嵌入技术的发展可以有效地解决实体关系表示的问题,提高了计算机对于知识图谱数据的处理和分析能力,为我们提供了更加高效和精确的数据处理和分析方法。 ### 回答3: 知识图谱嵌入(knowledge graph embedding)是一种用于将知识图谱中的实体和关系等复杂结构进行编码的技术。知识图谱是一个用于存储和展示关于世界知识的图形化数据库,它由实体(例如人、地点、事件)和实体之间的关系(例如拥有、出生于、是)等构成。嵌入技术使得知识图谱更容易被机器学习算法所处理和理解。 传统的方式是将知识图谱变换为二元组形式进行处理,但这种处理方式不仅容易碰到零件、稀疏性问题,而且无法很好地进行计算。知识图谱嵌入技术的出现改变了这一问题。它通过将实体和关系嵌入到连续向量空间中,将高维空间中的非线性模式映射到低维空间中,从而方便距离计算和关系推理。这些嵌入向量能够保留知识图谱中实体和关系之间的语义关系,并且能够提供非常丰富而有效的信息。 知识图谱嵌入技术的应用包含了许多领域,如自然语言处理、计算机视觉、推荐系统等等。例如,在自然语言处理领域中,嵌入技术可以将单词和短语嵌入到向量空间中,以便于计算单词和短语之间的相似度。在推荐系统领域中,嵌入技术可以将用户和物品嵌入到向量空间中,从而在用户和物品之间建立起距离和相似度的关系,进而提高个性化推荐的效果。 目前,实体嵌入方法主要分为基于矩阵分解的方法、基于跳数预测的方法和基于神经网络的方法。而关系嵌入方法主要分为基于旋转法的模型、基于距离法的模型和基于神经网络的模型。这些方法都通过学习实体和关系嵌入表示,从而实现知识图谱的语义建模、推理和图谱补全等功能。 总之,知识图谱嵌入技术是一种将知识图谱中实体和关系嵌入到向量空间中的高效手段,其应用已经渗透到各个领域。未来,这项技术将继续发挥巨大的作用,为人们带来更多更好的智能应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值