Combining prompt learning with contextual semantics for inductive relationprediction

摘要

知识图的归纳关系预测旨在预测两个新实体之间缺失的关系。以往关于关系预测的研究大多局限于换能型环境,无法应用于换能型环境。近年来,人们提出了一些通过学习拓扑语义来处理该问题的归纳方法。然而,它们仅仅依赖于结构信息,忽视了先验知识的作用。在稀疏结构的情况下,这种限制被放大,从而阻碍了归纳能力。先验知识不仅可以过滤掉无效的拓扑结构,还可以补充拓扑语义。为此,我们提出了一种新的归纳模型,plc,它结合了上下文语义的提示学习,以充分利用先验知识。为了过滤掉不相关的拓扑结构,我们创新地使用硬提示来挖掘预训练语言模型(PLMs)中的先验知识,作为提取子图的基础。此外,我们通过在初始化期间将关系文本描述集成到关系嵌入中来增强语义表示,补充了拓扑语义。在四个基准数据集上的实验结果表明,plc优于现有的最先进的方法。

3. Methods

3.1. Subgraph extraction module

Robust controller design involves the synthesis of a controller that can handle uncertainties and disturbances in a system. This is typically done by formulating the problem as an optimization problem, where the goal is to find a controller that minimizes a cost function subject to constraints. One approach to robust controller design involves combining prior knowledge with data. Prior knowledge can come from physical laws, engineering principles, or expert knowledge, and can help to constrain the search space for the controller design. Data, on the other hand, can provide information about the behavior of the system under different conditions, and can be used to refine the controller design. The combination of prior knowledge and data can be done in a number of ways, depending on the specific problem and the available information. One common approach is to use a model-based design approach, where a mathematical model of the system is used to design the controller. The model can be based on physical laws, or it can be derived from data using techniques such as system identification. Once a model is available, prior knowledge can be incorporated into the controller design by specifying constraints on the controller parameters or the closed-loop system response. For example, if it is known that the system has a certain level of damping, this can be used to constrain the controller design to ensure that the closed-loop system response satisfies this requirement. Data can be used to refine the controller design by providing information about the uncertainties and disturbances that the system is likely to encounter. This can be done by incorporating data-driven models, such as neural networks or fuzzy logic systems, into the controller design. These models can be trained on data to capture the nonlinearities and uncertainties in the system, and can be used to generate control signals that are robust to these uncertainties. Overall, combining prior knowledge and data is a powerful approach to robust controller design, as it allows the designer to leverage both physical principles and empirical data to design a controller that is robust to uncertainties and disturbances.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值