深度学习入门——Affine层(仿射层-矩阵乘积)

  • 神经网络的正向传播中进行的矩阵乘积运算在几何学领域被称为“仿射变换(Affine)”

1. 输入为单个数据在这里插入图片描述
在这里插入图片描述

2. 批版本的Affine
在这里插入图片描述

# coding: utf-8
import numpy as np


class Affine:
    """定义仿射层(矩阵乘积)"""
    def __init__(self, W, b):
        self.W = W
        self.b = b
        self.x = None
        self.dW = None
        self.db = None

    def forward(self, x):
        self.x = x
        out = np.dot(x, self.W) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T) # T代表转置
        self.dW = np.dot(self.x.T, dout) # x要在前面乘
        self.db = np.sum(dout, axis=0) # 偏置反向传播需要汇总为偏置的元素

        return  dx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值