双层网络(仿射层+ReLu层)

理论部分:2022Cs231n笔记-神经网络和反向传播_iwill323的博客-CSDN博客

目录

导包和处理数据

仿射层

网络层代码测试

ReLu层

仿射+ReLu

Loss layers: Softmax and SVM

Two-layer network

SGD

Solver

使用solver训练模型

 可视化权重

 调试模型

需要注意的函数

矩阵和向量相加

矩阵和向量相乘

np.random.randint

setdefault

pop


导包和处理数据

# As usual, a bit of setup
from __future__ import print_function
import time
import numpy as np
import matplotlib.pyplot as plt
from cs231n.data_utils import get_CIFAR10_data
from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array

%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

def rel_error(x, y):
  """ returns relative error """
  return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))

# Load the (preprocessed) CIFAR10 data.
# 要去get_CIFAR10_data()文件中修改数据集位置:cifar10_dir = 'cs231n\datasets\CIFAR10'
data = get_CIFAR10_data()  
for k, v in list(data.items()):
  print(('%s: ' % k, v.shape))

这里把get_CIFAR10_data贴出来,做了书籍集加载、划分、减均值、调整通道位置这几件事。、

但是没有做重复加载数据的排查

def get_CIFAR10_data(
    num_training=49000, num_validation=1000, num_test=1000, subtract_mean=True
):
    """
    Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
    it for classifiers. These are the same steps as we used for the SVM, but
    condensed to a single function.
    """
    # Load the raw CIFAR-10 data
    cifar10_dir = "cs231n\datasets\CIFAR10"
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

    # Subsample the data
    mask = list(range(num_training, num_training + num_validation))
    X_val = X_train[mask]
    y_val = y_train[mask]
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]

    # Normalize the data: subtract the mean image
    if subtract_mean:
        mean_image = np.mean(X_train, axis=0)
        X_train -= mean_image
        X_val -= mean_image
        X_test -= mean_image

    # Transpose so that channels come first
    X_train = X_train.transpose(0, 3, 1, 2).copy()
    X_val = X_val.transpose(0, 3, 1, 2).copy()
    X_test = X_test.transpose(0, 3, 1, 2).copy()

    # Package data into a dictionary
    return {
        "X_train": X_train,
        "y_train": y_train,
        "X_val": X_val,
        "y_val": y_val,
        "X_test": X_test,
        "y_test": y_test,
    }

仿射层

def affine_forward(x, w, b):
    """
    The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N
    examples. We will reshape each input into a vector of dimension 
    D = d_1 * ... * d_k, and then transform it to an output vector of dimension M.

    Inputs:
    - x: A numpy array containing input data, of shape (N, d_1, ..., d_k)
    - w: A numpy array of weights, of shape (D, M)
    - b: A numpy array of biases, of shape (M,)

    Returns a tuple of:
    - out: output, of shape (N, M)
    - cache: (x, w, b)
    """
    x_vector = x.reshape(x.shape[0], -1) 
    out = x_vector.dot(w) + b 
    # 上面第一项形状是(N, M),b的形状是(M,),dot乘法要求x_vector的最后一维和b一致

    cache = (x, w, b)
    return out, cache


def affine_backward(dout, cache):
    """
    Computes the backward pass for an affine layer.

    Inputs:
    - dout: Upstream derivative, of shape (N, M)
    - cache: Tuple of:
      - x: Input data, of shape (N, d_1, ... d_k)
      - w: Weights, of shape (D, M)
      - b: Biases, of shape (M,)

    Returns a tuple of:
    - dx: Gradient with respect to x, of shape (N, d1, ..., d_k)
    - dw: Gradient with respect to w, of shape (D, M)
    - db: Gradient with respect to b, of shape (M,)
    """
    x, w, b = cache
  
    dx = dout.dot(w.T).reshape(x.shape) # (N, M)  * (M, D)
    x_vector = x.reshape(x.shape[0], -1)
    dw = x_vector.T.dot(dout)  # (D, N) * (N, M)    
    # db = np.dot(dout.T, np.ones(x.shape[0])) # dout.T:(M, N) 相当于每一行求和
    db = dout.sum(axis=0) # 这么写也对   为什么是求和不是求平均?
    return dx, dw, db

网络层代码测试

正向

# Test the affine_forward function

num_inputs = 2
input_shape = (4, 5, 6)
output_dim = 3

input_size = num_inputs * np.prod(input_shape)
weight_size = output_dim * np.prod(input_shape)

x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape)
w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape), output_dim)
b = np.linspace(-0.3, 0.1, num=output_dim)

out, _ = affine_forward(x, w, b)
correct_out = np.array([[ 1.49834967,  1.70660132,  1.91485297],
                        [ 3.25553199,  3.5141327,   3.77273342]])

# Compare your output with ours. The error should be around e-9 or less.
print('Testing affine_forward function:')
print('difference: ', rel_error(out, correct_out))

反向:梯度检验

# Test the affine_backward function
np.random.seed(231)
x = np.random.randn(10, 2, 3)
w = np.random.randn(6, 5)
b = np.random.randn(5)
dout = np.random.randn(10, 5)

dx_num = eval_numerical_gradient_array(lambda x: affine_forward(x, w, b)[0], x, dout)
dw_num = eval_numerical_gradient_array(lambda w: affine_forward(x, w, b)[0], w, dout)
db_num = eval_numerical_gradient_array(lambda b: affine_forward(x, w, b)[0], b, dout)

_, cache = affine_forward(x, w, b)
dx, dw, db = affine_backward(dout, cache)

# The error should be around e-10 or less
print('Testing affine_backward function:')
print('dx error: ', rel_error(dx_num, dx))
print('dw error: ', rel_error(dw_num, dw))
print('db error: ', rel_error(db_num, db))

这里把梯度检查的代码贴出来

def eval_numerical_gradient_array(f, x, df, h=1e-5):
    """
    Evaluate a numeric gradient for a function that accepts a numpy
    array and returns a numpy array.
    """
    grad = np.zeros_like(x)
    it = np.nditer(x, flags=["multi_index"], op_flags=["readwrite"])
    while not it.finished:
        ix = it.multi_index

        oldval = x[ix]
        x[ix] = oldval + h
        pos = f(x).copy()
        x[ix] = oldval - h
        neg = f(x).copy()
        x[ix] = oldval

        grad[ix] = np.sum((pos - neg) * df) / (2 * h)
        it.iternext()
    return grad

ReLu层

def relu_forward(x):
    """
    Computes the forward pass for a layer of rectified linear units (ReLUs).

    Input:
    - x: Inputs, of any shape

    Returns a tuple of:
    - out: Ou
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值