单调队列优化dp(三)——#10177. 「一本通 5.5 例 3」修剪草坪

题目链接:https://loj.ac/problem/10177
解题思路
我们设dp[i][0]表示以i为结尾不选i的最大值,dp[i][1]表示以i为结尾选i的最大值。
我们可以得到以下状态转移方程。
在这里插入图片描述
在这里插入图片描述
其中dp[i][1]可以继续转化。

在这里插入图片描述
我们将sum[i]提取出来。

在这里插入图片描述
我们发现后面是求一段连续区间内的最大值,所以可以用单调队列优化,复杂度O(n)。
AC代码

#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+5;
struct node
{
    int pos;
    ll val;
}q[N];
ll dp[N][2];//dp[i][0]表示以i为结尾不选i的最大值,dp[i][1]表示以i为结尾的选i的最大值
ll E[N],sum[N];
int n,k,l,r;
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;++i)
    {
        scanf("%lld",&E[i]);
        sum[i]=sum[i-1]+E[i];
    }
    q[r].val=0;
    q[r++].pos=0;
    for(int i=1;i<=n;++i)
    {
        while(l<r&&(i-q[l].pos)>k)
        l++;
        dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
        dp[i][1]=sum[i]+q[l].val;
        //cout<<dp[i][0]<<" "<<dp[i][1]<<endl;
        //cout<<q[l].pos<<" "<<q[l].val<<endl;
        ll v=dp[i][0]-sum[i];
        //cout<<v<<endl;
        while(l<r&&v>=q[r-1].val)
        r--;
        q[r].val=v;
        q[r++].pos=i;
    }
    printf("%lld\n",max(dp[n][0],dp[n][1]));
    return 0;
}

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
单调队列优化DP是一种常用的优化方法,可以将时间复杂度从 $O(n^2)$ 降低到 $O(n)$ 或者 $O(n \log n)$。以下是一道利用单调队列优化DP的典型题目: 题目描述: 给定一个长度为 $n$ 的序列 $a_i$,定义 $f(i)$ 为 $a_i$ 到 $a_n$ 中的最小值,即 $f(i) = \min\limits_{j=i}^n a_j$。现在定义 $g(i)$ 为满足 $f(j) \ge a_i$ 的最小下标 $j$,即 $g(i) = \min\{j \mid j > i, f(j) \ge a_i\}$。如果不存在这样的下标 $j$,则 $g(i) = n+1$。 现在请你计算出 $1 \le i \le n$ 的所有 $g(i)$ 的值。 输入格式: 第一行包含一个整数 $n$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 输出格式: 输出 $n$ 行,第 $i$ 行输出 $g(i)$ 的值。 输入样: 5 3 1 2 4 5 输出样: 2 5 5 5 6 解题思路: 设 $dp(i)$ 表示 $g(i)$,那么 $dp(i)$ 与 $dp(i+1)$ 的转移关系可以表示为: $$dp(i)=\begin{cases}i+1, &\text{if}\ f(i+1)\ge a_i \\dp(i+1), &\text{else}\end{cases}$$ 这个转移方程可以使用暴力 DP 解决,时间复杂度为 $O(n^2)$。但是,我们可以使用单调队列优化 DP,将时间复杂度降为 $O(n)$。 我们定义一个单调队列 $q$,存储下标。队列 $q$ 中的元素满足: - 队列中的元素是单调递减的,即 $q_1 < q_2 < \cdots < q_k$; - 对于任意的 $i\in [1,k]$,有 $f(q_i) \ge f(q_{i+1})$。 队列 $q$ 的作用是维护一个长度为 $k$ 的区间 $[i+1,q_k]$,满足这个区间中的所有 $j$ 都满足 $f(j) < f(i+1)$。 根据定义,当我们要求 $dp(i)$ 时,只需要查找队列 $q$ 中第一个满足 $f(q_j) \ge a_i$ 的位置 $q_j$,那么 $g(i) = q_j$,如果队列 $q$ 中不存在这样的位置,则 $g(i) = n+1$。 那么如何维护单调队列 $q$ 呢?我们可以在每次 DP 的过程中,将 $i$ 加入队尾。然后判断队首元素 $q_1$ 是否满足 $f(q_1) \ge a_i$,如果满足则弹出队首元素,直到队首元素不满足条件为止。 由于每个元素最多被加入队列一次,并且最多被弹出一次,因此时间复杂度为 $O(n)$。具体实现细节可以参考下面的代码实现:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值