单调队列优化dp(三)——#10177. 「一本通 5.5 例 3」修剪草坪

题目链接:https://loj.ac/problem/10177
解题思路
我们设dp[i][0]表示以i为结尾不选i的最大值,dp[i][1]表示以i为结尾选i的最大值。
我们可以得到以下状态转移方程。
在这里插入图片描述
在这里插入图片描述
其中dp[i][1]可以继续转化。

在这里插入图片描述
我们将sum[i]提取出来。

在这里插入图片描述
我们发现后面是求一段连续区间内的最大值,所以可以用单调队列优化,复杂度O(n)。
AC代码

#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+5;
struct node
{
    int pos;
    ll val;
}q[N];
ll dp[N][2];//dp[i][0]表示以i为结尾不选i的最大值,dp[i][1]表示以i为结尾的选i的最大值
ll E[N],sum[N];
int n,k,l,r;
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;++i)
    {
        scanf("%lld",&E[i]);
        sum[i]=sum[i-1]+E[i];
    }
    q[r].val=0;
    q[r++].pos=0;
    for(int i=1;i<=n;++i)
    {
        while(l<r&&(i-q[l].pos)>k)
        l++;
        dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
        dp[i][1]=sum[i]+q[l].val;
        //cout<<dp[i][0]<<" "<<dp[i][1]<<endl;
        //cout<<q[l].pos<<" "<<q[l].val<<endl;
        ll v=dp[i][0]-sum[i];
        //cout<<v<<endl;
        while(l<r&&v>=q[r-1].val)
        r--;
        q[r].val=v;
        q[r++].pos=i;
    }
    printf("%lld\n",max(dp[n][0],dp[n][1]));
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值