统计学04: 二项分布、超几何分布

本文探讨了二项分布与超几何分布的概念及其在概率问题中的应用。二项分布在n次独立重复的伯努利试验中,描述事件A恰好发生k次的概率。超几何分布则是在不放回的抽样中,描述指定类型物件被抽中的次数。当样本总数远大于抽取次数时,两者关系接近,二项分布可作为超几何分布的近似。
摘要由CSDN通过智能技术生成

<~生~信~交~流~与~合~作~请~关~注~公~众~号@生信探索>

二项分布

伯努力事件:发生和不发生概率和为1

在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。

有13个 小球,4个蓝色,9个红色的,随机抽 5个小球,每次抽1个,且放回,问抽到 3个蓝色球的概率。

抽到蓝球的概率为 ,那么根据二项分布概率公式,

分布 表达式 密度函数 数学期望 方差
二项
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值