<~生~信~交~流~与~合~作~请~关~注~公~众~号@生信探索>
二项分布
伯努力事件:发生和不发生概率和为1
在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。
有13个 小球,4个蓝色,9个红色的,随机抽 5个小球,每次抽1个,且放回,问抽到 3个蓝色球的概率。
抽到蓝球的概率为 ,那么根据二项分布概率公式,
分布 | 表达式 | 密度函数 | 数学期望 | 方差 |
---|---|---|---|---|
二项 |