异想之旅:本人原创博客完全手敲,绝对非搬运,全网不可能有重复;本人无团队,仅为技术爱好者进行分享,所有内容不牵扯广告。本人所有文章仅在CSDN、掘金和个人博客(一定是异想之旅域名)发布,除此之外全部是盗文!
题目描述
棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A 点 (0,0)、B 点 (n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
In 1
6 6 3 3
Out 1
6
说明/提示
对于 100% 的数据,1≤n,m≤20,0≤ 马的坐标 ≤20。
只能向下或向右走
那么对于每一个点卒只能从左边或上边来
当前点路径条数=左边点路径条数+上边点路径条数
对于马控制的点,路径条数为0
先初始化第一行和第一列,然后逐个递推求解即可
#include <bits/stdc++.h>
using namespace std;
bool g[23][23];
long long f[21][21];
int plu[2][8] = {{2, 2, -2, -2, 1, 1, -1, -1}, {1, -1, 1, -1, 2, -2, 2, -2}};
int main() {
int n, m, cx, cy;
cin >> n >> m >> cx >> cy;
g[cx][cy] = 1;
for (int i = 0; i < 8; i++) {
if ((cx + plu[0][i]) <= n && cy + plu[1][i] <= m)
g[cx + plu[0][i]][cy + plu[1][i]] = 1;
}
f[0][0] = 1;
for (int i = 1; i <= n; i++) {
if (!g[i][0])
f[i][0] = f[i - 1][0];
else
f[i][0] = 0;
}
for (int i = 1; i <= m; i++) {
if (!g[0][i])
f[0][i] = f[0][i - 1];
else
f[0][i] = 0;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (!g[i][j])
f[i][j] = f[i - 1][j] + f[i][j - 1];
else
f[i][j] = 0;
}
}
cout << f[n][m];
return 0;
}
莫名感觉小学奥数在新东方学过一个这样的东西,当时是手动模拟来着