算法刷题【洛谷P1002 & NOIP2002 普及组】过河卒

本文介绍了如何使用动态规划解决一个棋盘游戏中马拦过河卒的问题。作者通过创建一个二维数组表示棋盘,并用布尔值标记马的控制点,然后初始化边界条件,最后通过递推计算卒从起点到终点的所有可行路径数量。算法思路清晰,适用于1≤n,m≤20的棋盘范围。
摘要由CSDN通过智能技术生成

异想之旅:本人原创博客完全手敲,绝对非搬运,全网不可能有重复;本人无团队,仅为技术爱好者进行分享,所有内容不牵扯广告。本人所有文章仅在CSDN、掘金和个人博客(一定是异想之旅域名)发布,除此之外全部是盗文!


题目描述

棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点 (0,0)、B 点 (n,m),同样马的位置坐标是需要给出的。

在这里插入图片描述

现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 B 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

输入输出样例

In 1

6 6 3 3

Out 1

6
说明/提示

对于 100% 的数据,1≤n,m≤20,0≤ 马的坐标 ≤20。


只能向下或向右走

那么对于每一个点卒只能从左边或上边来

当前点路径条数=左边点路径条数+上边点路径条数

对于马控制的点,路径条数为0

先初始化第一行和第一列,然后逐个递推求解即可

#include <bits/stdc++.h>
using namespace std;

bool g[23][23];
long long f[21][21];
int plu[2][8] = {{2, 2, -2, -2, 1, 1, -1, -1}, {1, -1, 1, -1, 2, -2, 2, -2}};

int main() {
    int n, m, cx, cy;
    cin >> n >> m >> cx >> cy;

    g[cx][cy] = 1;

    for (int i = 0; i < 8; i++) {
        if ((cx + plu[0][i]) <= n && cy + plu[1][i] <= m)
            g[cx + plu[0][i]][cy + plu[1][i]] = 1;
    }

    f[0][0] = 1;

    for (int i = 1; i <= n; i++) {
        if (!g[i][0])
            f[i][0] = f[i - 1][0];
        else
            f[i][0] = 0;
    }

    for (int i = 1; i <= m; i++) {
        if (!g[0][i])
            f[0][i] = f[0][i - 1];
        else
            f[0][i] = 0;
    }

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (!g[i][j])
                f[i][j] = f[i - 1][j] + f[i][j - 1];
            else
                f[i][j] = 0;
        }
    }

    cout << f[n][m];

    return 0;
}


莫名感觉小学奥数在新东方学过一个这样的东西,当时是手动模拟来着

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

异想之旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值