翻译:Fully Convolutional Networksfor Semantic Segmentation

本文探讨了全卷积网络(FCNs)在语义分割任务中的优势,展示其端到端训练在像素级别预测上的优越性,提高了语义分割的准确性和效率。FCNs可以接受任意大小的输入并产生相应的输出,通过跳跃架构融合不同层次的特征,以实现准确的像素级分割。实验结果表明,FCNs在PASCAL VOC 2011-2等多个数据集上取得了改进的分割准确性。
摘要由CSDN通过智能技术生成

博主翻译能力有限,在不通顺的地方提供英文原文。

专业术语:

pixel-wise,patch-wise,image-wise的含义如下

pixel-wise字面上的理解一样,一张图片是由一个个pixel组成的,这个是图像的基本单位,像素级别的

image-wise图像级别,比如一张图片的标签是狗,是对整个图片的标注

patch-wise介于像素级别和图像级别的区域,也就是块,每个patch都是由好多个pixel组成的
 

DOI:10.1109/TPAMI.2016.2572683

出版时间 APR 2017

摘要:卷积网络是一种强大的可视化模型,可以产生特征的层次结构。我们表明,卷积网络本身,训练端到端,像素到像素,在语义分割中提高了以前的最佳结果。我们的关键见解是建立“完全卷积”网络,可以接受任意大小的输入,并通过高效的推理和学习产生相应大小的输出。我们定义并详细描述了完全卷积网络的空间,解释了它们在空间密集预测任务中的应用,并描述了与先前模型的联系。我们将同期的分类网络(AlexNet、VGG网络和GoogLeNet)改编为完全卷积网络,并通过微调细分任务来迁移它们学习到的特征。然后,我们定义了一个跳跃架构,该架构将来自较深、较粗层的语义信息与来自较浅、较细层的外观信息结合起来,以产生准确、详细的分割。我们的完全卷积网络实现了改进的PASCAL VOC分割(2012年30%相对改进到67.2%平均IU), NYUDv2, SIFT Flow和PASCAL- context,而对典型图像的推断需要十分之一秒。

Index Terms—Semantic Segmentation, Convolutional Networks, Deep Learning, Transfer Learning

介绍 卷积网络正在推动认知度的进步。卷积神经网络不仅改进了全图像分类[1],[2],[3],还改进了局部任务的结构化输出。其中包括边界框对象检测[4],[5],[6],部分和关键点预测[7],[8],以及局部对应[8],[9]方面的进展。从粗糙到精细推理的自然下一步是对每个像素进行预测。以前的方法使用卷积神经网络进行语义分割[10][11][12][13][14][15][16],其中,每个像素都用其外围对象或区域的类标记,但该工作解决了缺点。

我们表明,全卷积网络(FCNs)训练端到端,像素到像素的语义分割超过了以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

两只蜡笔的小新

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值