数学建模(四)、拟合算法

拟合算法和插值算法的选择

插值算法中,得到的多项式 f (x) 要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可,这就是拟合的思想。 (拟合的结果是得到一个确定的曲线)

拟合算法和插值算法使用选择条件:
当样本点多余 30 个时,用拟合而不用插值算法。

求解拟合曲线

找出 y 和 x 之间的拟合曲线
在这里插入图片描述
第一步:根据已知数据做散点图
根据散点图看点的走势
在这里插入图片描述
第二步:由散点图可知,可以用一条线性直线拟合数据
于是,设
y = k x + b y=kx+b y=

数学建模中的拟合算法是指通过给定的数据集来寻找一个函数或者曲线,使得这个函数尽可能地接近数据点的过程。这通常用于预测未来趋势或是理解不同变量之间的关系。以下是有关数学建模拟合算法的一些资源和信息。 ### 方法一:了解基本概念 学习拟合的基本原理对于掌握更复杂的拟合技术和应用至关重要。可以查阅大学教材或在线课程,例如Coursera、edX上的统计学入门课程,这些平台提供了从基础到高级的教程。 ### 方法二:探索常用软件包 许多编程语言都有实现拟合功能的强大库。Python中有`scipy.optimize.curve_fit()` 和 `numpy.polyfit()`, R语言则有内置的lm() 函数来进行线性回归拟合MATLAB也提供了一系列工具箱支持各种类型的拟合分析。 ### 方法三:阅读学术论文和技术报告 IEEE Xplore Digital Library, ScienceDirect等数据库包含了大量关于最新拟合技术的研究成果。此外,《SIAM Review》期刊经常发表高质量的应用数学文章,其中不乏涉及先进拟合方法的工作。 ### 方法:参与竞赛练习 参加像Kaggle这样的数据分析比赛能够获得实战经验,并接触到真实的案例研究。同时也可以参考过往全国大学生数学建模大赛题目及其解答方案,从中获取灵感。 ### 方法五:观看视频教程 YouTube和其他教育平台上有很多免费的教学视频可以帮助理解和实施不同的拟合策略。搜索关键词如"curve fitting tutorial", "regression analysis in Python/R/MATLAB".
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值