数学一 线性代数

 最近在准备2022的计算机考研
 本篇文章是数学一,线性代数的笔记
 教材是同济大学的教材
 后续会更新

0. 概要

1. 行列式

2. 矩阵

2.1 特殊矩阵

考试中我们会经常见到三类特殊的矩阵,关于他们的一些特殊的性质我会在矩阵乘法里详细介绍。

列向量
[ x 1 x 2 ⋮ x n ] \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n\\ \end{bmatrix} x1x2xn
行向量
[ x 1 x 2 ⋯ x n ] \begin{bmatrix} x_1&x_2&\cdots&x_n\\ \end{bmatrix} [x1x2xn]
对角矩阵
[ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a m n ] \begin{bmatrix} {a_{11}}&0&{\cdots}&0\\ 0&{a_{22}}&{\cdots}&0\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ 0&0&{\cdots}&{a_{mn}}\\ \end{bmatrix} a11000a22000amn

2.2 矩阵运算

2.2.1 矩阵乘法

矩阵的运算不满足交换律和消去律!!!

2.2.2 矩阵转置

2.2.3 方阵的行列式

2.3 伴随矩阵

3. 向量

4. 线性方程组

5. 矩阵特征

6. 二次型

二次型的概念可能有很多同学不清楚,一定不要因为最后一章而掉以轻心,本章是重点,同时要分清相似,合同,等价的不同。

6.1 基本概念

二次型的定义
f ( x 1 , x 2 , x 3 , . . . , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j = x T A x , 其 中 A 为 系 数 矩 阵 , A = ( a i j ) n × n f(x_1,x_2,x_3,...,x_n)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j=x^TAx,其中A为系数矩阵,A=(a_{ij})_{n\times n} f(x1,x2,x3,...,xn)=i=1nj=1naijxixj=xTAxAA=aijn×n

  1. 矩阵A并不一定是对称矩阵,但是为方便运算,常常把A写成对称的形式,我们在计算时,一定要先注意先把A化成对称的形式
  2. 有些时候题目可能会在二次型的表示上有难度,我们只要记住将:
    a x 1 + b x 2 + c x 3 = [ a , b , c ] [ x 1 x 2 x 3 ] = α ∗ x = x T ∗ α T ax_1+bx_2+cx_3=[a,b,c] \begin{bmatrix} x_1\\ x_2\\ x_3\\ \end{bmatrix}=\alpha *x=x^T*\alpha^T ax1+bx2+cx3=[a,b,c]x1x2x3=αx=xTαT ( a x 1 + b x 2 + c x 3 ) 2 = ( α ∗ x ) 2 = x T α T α x (ax_1+bx_2+cx_3)^2=(\alpha *x)^2=x^T\alpha^T\alpha x (ax1+bx2+cx3)2=(αx)2=xTαTαx
    表示为行向量与列向量相乘的形式即可,比如上式子中可以求得 A = α T α A=\alpha^T\alpha A=αTα

标准型:只含平方项的二次型(标准型不唯一)
规范型:平方项的系数只取1,-1,0(二次型的规范型是唯一的)
正惯性指数:正平方项个数
负惯性指数:负平方项个数

6.2 化标准型

求标准型有两种方法,两种的适用范围不同,并且都要掌握。
1. 正交变换法(特征值法)
对称矩阵是必定可以相似对角化的,所以这种方法是这肯定可以的
利用 ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0解出特征值和对应特征向量,同时利用 施密特正交化 k重根的对应的特征向量(因为不同特征值对应的特征向量已经正交了)
一般考研中就考到2个,这里给出示例:
假如三阶矩阵A对应特征值为 λ 1 , λ 1 , λ 2 \lambda_1,\lambda_1,\lambda_2 λ1,λ1,λ2,对应特征向量为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3
β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) ∗ β 1 \beta_1=\alpha_1 \\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}*\beta_1 β1=α1β2=α2(β1,β1)(α2,β1)β1
然后单位化得到:
( β 1 ∣ ∣ β 1 ∣ ∣ , β 2 ∣ ∣ β 2 ∣ ∣ , α 3 ∣ ∣ α 3 ∣ ∣ ) = P (\frac{\beta_1}{||\beta_1||} ,\frac{\beta_2}{||\beta_2||},\frac{\alpha_3}{||\alpha_3||})=P (β1β1,β2β2,α3α3)=P
P T A P = [ λ 1 λ 1 λ 3 ] P^TAP=\begin{bmatrix} {\lambda_1}&{}&{}\\ {}&{\lambda_1}&{}\\ {}&{}&{\lambda_3}\\ \end{bmatrix} PTAP=λ1λ1λ3
其中P为正交矩阵,即 P T = P − 1 P^T=P^{-1} PT=P1
2. 配方法
当特征值不好求或者说特征值的值求出来比较复杂的时候(比如带根号或者复杂的分数),并且题目只求标准型而不求正交矩阵P的时候,就可以考虑配方法。
要点在于每次提取参数时要保证少一个,也就是说如果 x 1 x_1 x1被提出来之后,之后就不能再出现 x 1 x_1 x1了,这样才能保证是线性变换,下面给出示例:
假设 f ( x 1 , x 2 , x 3 ) = 2 x 1 2 + 2 x 2 2 + 2 x 3 2 − 2 x 1 x 2 − 2 x 2 x 3 − 2 x 1 x 3 f(x_1,x_2,x_3)=2x_1^2+2x_2^2+2x_3^2-2x_1x_2-2x_2x_3-2x_1x_3 f(x1,x2,x3)=2x12+2x22+2x322x1x22x2x32x1x3
先配 x 1 x_1 x1,再配 x 2 x_2 x2 x 3 x_3 x3:
2 ( x 1 2 − x 1 x 2 − x 1 x 3 ) + 2 x 2 2 + 2 x 3 2 = 2 [ x 1 2 − 2 x 1 ∗ x 2 + x 3 2 + ( x 2 + x 3 2 ) 2 ] + 3 2 ( x 2 + x 3 ) 2 2(x_1^2-x_1x_2-x_1x_3)+2x_2^2+2x_3^2 \\ =2[x_1^2-2x_1*\frac{x_2+x_3}{2}+(\frac{x_2+x_3}{2})^2]+\frac{3}{2}(x_2+x_3)^2 2(x12x1x2x1x3)+2x22+2x32=2[x122x12x2+x3+(2x2+x3)2]+23(x2+x3)2
最后就可以得到标准型: f ( x 1 , x 2 , x 3 ) = 2 y 1 2 + 3 2 y 2 2 f(x_1,x_2,x_3)=2y_1^2+\frac{3}{2}y_2^2 f(x1,x2,x3)=2y12+23y22

注意:

  1. 标准型一定是以特征值作为系数吗?当然不是,首先我们知道标准型不是唯一的,其次两种方法得到的系数是否相同,这取决于变换的矩阵P,如果是正交变换,那么系数一定是特征值,如果不是,则不是对应特征值。
  2. 配方法的前提一定是可逆变换,即 x = P y x=Py x=Py中的P一定要是可逆矩阵,所以不当题目看似已经配好了平方项的时候,一定要写出P是否为可逆变换,按照经验来说,多半是命题人挖的坑。

6.3 化规范型

这个考点比较偏,很难考到,但是秉持面面俱到的原则,还是提出来。在我们已经得到正交矩阵P将系数矩阵A变为标准型的情况下,如何获得变换为标准型的矩阵呢?
我们只需要将对角矩阵单位化,但是需要左右两边都乘一个矩阵,所以考虑一个对角矩阵,其对角元素取特征值绝对值的根号分之一,如果为0,则取1,如下所示:
Q = [ 1 ∣ λ 1 ∣ 1 ∣ λ 2 ∣ ⋱ 1 ∣ λ p ∣ 1 ⋱ ] n × n Q=\begin{bmatrix} {\frac{1}{\sqrt{|\lambda_1|}}}&{}&{}&{}&{}\\ {}&{\frac{1}{\sqrt{|\lambda_2|}}}&{}&{}&{}\\ {}&{}&{\ddots}&{}&{}&{}\\ {}&{}&{}&{\frac{1}{\sqrt{|\lambda_p|}}}&{}&{}\\ {}&{}&{}&{}&{1}&{}\\ {}&{}&{}&{}&{}&{\ddots}\\ \end{bmatrix}_{n\times n} Q=λ1 1λ2 1λp 11n×n
x = P y x=Py x=Py得到标准型, y = Q z y=Qz y=Qz 得到标准型,那么 x = P Q z x=PQz x=PQz
f = x T A x = z T ( P Q ) T A ( P Q ) z = ( ± ) z 1 2 + . . . . . . . ( ± ) z p 2 f=x^TAx=z^T(PQ)^TA(PQ)z=(\pm)z_1^2+.......(\pm)z_p^2 f=xTAx=zT(PQ)TAPQz=(±)z12+.......(±)zp2
± \pm ±取决于特征值的正负,而虽然变换 x = P y x=Py x=Py是正交变换,但是 x = P Q z x=PQz x=PQz不一定是正交变换

6.4 正定矩阵

正定矩阵应该是二次型考的最多的地方了,一般是考察对正定矩阵的判定。充分必要条件有四个,都很重要:(一定要注意,正定矩阵一定是对称矩阵)
若一个二次型为正定二次型:
⇔ \Leftrightarrow 1. 特征值:A的n个特征值全部大于零 ⇔ \Leftrightarrow 正惯性指数为n
⇔ \Leftrightarrow 2. 定义:任意 x ≠ 0 \boldsymbol{x}\neq\boldsymbol{0} x=0 x T A x > 0 x^TAx>0 xTAx>0
⇔ \Leftrightarrow 3. 顺序主子式:矩阵A的个顺序主子式大于零

对于抽象形矩阵,我们一般用定义法和特征值法结合使用来判断一个矩阵是否正定

  1. 通过对抽象矩阵左乘 x T x^T xT,右乘 x x x来变换矩阵,然后利用已知条件求解,有时候会利用矩阵的秩,即如果出现 ( A x ) T ( A x ) = ∣ ∣ A x ∣ ∣ 2 (Ax)^T(Ax)=||Ax||^2 (AxT(Ax)=Ax2的形式,若已知A满秩,那么 A x = 0 Ax=0 Ax=0只有在 x = 0 x=0 x=0有解,也就是说任意 x ≠ 0 , ∣ ∣ A x ∣ ∣ 2 > 0 \boldsymbol{x}\neq\boldsymbol{0},||Ax||^2>0 x=0,Ax2>0,即 A T A A^TA ATA正定。、
  2. 如果已知一个矩阵A正定,那么A的逆矩阵,对称矩阵,或者A的特征多项式都可以利用矩阵A的特征值来判断,比如 B = A 2 + A − 1 B=A^2+A^{-1} B=A2+A1在A正定的前提下就一定正定,因为B对应特征值为 λ 2 + 1 λ > 0 \lambda^2+\frac{1}{\lambda}>0 λ2+λ1>0

对于具体矩阵,一般利用顺序主子式的判别法或者求出矩阵的特征值来判断是否正定,有时候也会使用定义法。
这里特别提一下定义法解法,一般也是如下这种考察形式:

f ( x 1 , x 2 , x 3 ) = ( a x 1 + x 2 − x 3 ) 2 + ( x 2 + x 3 ) 2 + ( x 1 − 2 x 2 + a x 3 ) 2 f(x_1,x_2,x_3)=(ax_1+x_2-x_3)^2+(x_2+x_3)^2+(x_1-2x_2+ax_3)^2 f(x1,x2,x3)=(ax1+x2x3)2+(x2+x3)2+(x12x2+ax3)2正定,求 a a a取值范围
[ 思 路 ] [思路] [] 可以看到 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)恒大于0,因为是三个平方项相加,唯一不正定的情况就是 f ( x 1 , x 2 , x 3 ) = 0 f(x_1,x_2,x_3)=0 f(x1,x2,x3)=0并且 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3不全为零,到这一步,就已经将正定转化为了线性方程组的问题,即将括号内的三个方程看作系数矩阵,如果此矩阵满秩,则没有非零解,则 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)正定。而判断一个矩阵是否满秩,如果是方阵可以直接求行列式,否则化作行阶梯矩阵观察。
而这道题如果打开括号,求出二次型的系数矩阵A,无论是用特征值法或者顺序主子式法都很难算,考研的后期一定要注意简化运算的问题。

6.5 等价,相似,合同

很多同学到了后期对这三个概念可能会有模糊,这里特地做一个讲解。
首先确定一个概念,三个矩阵关系中,相似是最强力的,等价最弱,然后就可以开始我们的讲解了。
对于两个矩阵 A , B A,B A,B
1. 矩阵等价:指的是 A A A可以经过若干次初等变换变换成 B B B,由于初等变换也是可逆变换,所以两个矩阵的秩一定是相等的,并且两个矩阵一定同型,不然是无法初等变换得到的,同时可以推理得到这个关系是可传递的,其实这三个关系都是可传递的
2. 矩阵合同:不仅要求 A , B A,B A,B同型,并且都是方阵和对称矩阵,指的是存在一个可逆矩阵P使得 P T A P = B P^TAP=B PTAP=B,这个概念可能有些抽象,从特征值的角度理解比较方便,就是两者的特征值正负惯性指数相等,而这也就意味着二者秩相等,同时正定或者不正定。
3. 矩阵相似:要求 A , B A,B A,B同型,并且都是方阵,指的是存在一个可逆矩阵P使得 P − 1 A P = B P^{-1}AP=B P1AP=B,从特征值的角度来说就是,二者特征值相等,并且还有一个隐含条件,二者必定同时可相似对角化或者不能,即对应的特征值的对应特征向量个数一样。
发现了吗?为什么等价最弱,因为合同和相似都能推出等价,秩相等是三个关系的共性,而为什么相似最强,因为在合同的基础上,还要求了特征值相等,合同只是特征值的正负关系相等,但是注意相似却不一定能推出合同,因为合同的前提是对称矩阵

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值