数学一 概率与数理统计

 最近在准备2022的计算机考研
 本篇文章是数学一,概率与数理统计的笔记
 教材是浙江大学的教材
 后续会更新

0.概要

1.随机事件和概率

1.1 事件的运算与概率

这个部分主要是对事件的表示,以及它们之间的表示和关系要有深的理解,并且一定要熟悉。难点主要要在于事件的关系。下面将几个常用的列举在下方。
事件的关系:

  1. 相容
  2. 互斥
  3. 对立
  4. 独立

事件的运算:设随机事件A,B

  1. 差集: A − B = A − A B = A B ‾ A-B=A-AB=A \overline{B} AB=AAB=AB,如果 B ⊂ A ⇒ P ( A − B ) = P ( A ) − P ( B ) B\subset A \Rightarrow P(A-B)=P(A)-P(B) BAP(AB)=P(A)P(B) 这个公式相当重要,也很爱考,关于第二个公式也要记住。
  2. 德摩根公式: A ∪ B ‾ = A ‾ ∩ B ‾ , A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cup B}=\overline{A} \cap \overline{B},\overline{A \cap B}=\overline{A} \cup \overline{B} AB=ABAB=AB,这个公式的重要性不言而喻。
  3. 并集: P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A\cup B \cup C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC),因为很多人记得住两个集合的情况但是记不住三个的时候,这里特地写出三集合的情况。值得注意的是,概率论中 A + B A+B A+B A ∪ B 是 等 效 的 A\cup B是等效的 AB

注意:事件的关系是不能通过它的概率来推断的,比如 P ( A ) = 0 ⇒ A = ∅ P(A)=0 \Rightarrow A=\varnothing P(A)=0A=,这个推论很明显是错误的,试题中出现的这种类似的推论可以直接pass掉,除去事件的独立关系,因为这种关系本身就是有概率关系定义的。

1.2 贝叶斯和全概率公式

2.一维随机变量

2.1 分布函数、概率分布、概率密度

2.2 随机变量函数的分布

一维函数的分布 常常考察一个新的变量 Z Z Z X X X的函数,这种题有两种考法。不管是求分布函数还是概率密度都推荐先求出分布函数,再考虑求导,因为有些地方的分段点不容易看出。

  1. 形如 Z = f ( X ) Z=f(X) Z=f(X)的形式
    这个时候需要带入表达式中 F Z ( z ) = P { Z ⩽ z } = P { f ( X ) ⩽ z } F_Z(z)=P\{ Z\leqslant z\}=P\{ f(X)\leqslant z\} FZ(z)=P{Zz}=P{f(X)z} z z z的取值范围进行讨论:①将 x x x的端点带入 f ( X ) f(X) f(X)中得到 z 1 , z 2 . . . . z n z_1,z_2....z_n z1,z2....zn
    ②求出 f ( X ) f(X) f(X)的广义极值或者最值得到 z n + 1 , . . . . z m z_{n+1},....z_m zn+1,....zm 最后利用分段点作积分即可
    我们常见的 m a x , m i n max,min maxmin也可以用这个方法求解。
    特别地,如果 X X X的分布函数为 F ( X ) F(X) F(X),令 Z = F ( X ) Z=F(X) Z=F(X),那么 Z ∼ U ( 0 , 1 ) Z \sim U(0,1) ZU(0,1)
  2. 出现分段函数,即 Z Z Z是与 X X X相关的分段函数,出现关于符号的正负讨论时等等,就考虑全概率公式,根据不确定的条件划分完备事件组。

3.多维随机变量

3.1 概率分布、边缘分布、条件分布

3.2 概率密度、边缘概率密度、条件概率分布

f X ( x ) f_X(x) fX(x)的要点在于将非零区域D写成二重积分中的X型区域,即:
a < x < b y 1 ( x ) < y < y 2 ( x ) a<x<b \\ y_1(x)<y<y_2(x) a<x<by1(x)<y<y2(x)
然后写作:
f X ( x ) = ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y , a < x < b f_X(x)=\int _{y_1(x)}^{y_2(x)}f(x,y)dy,\quad a<x<b fX(x)=y1(x)y2(x)f(x,y)dy,a<x<b

3.3 独立性判断

两个随机变量X,Y的独立性判断是经常作为考点的,很重要的部分,部分涉及到了下一章的内容,可以看了下一章再来看,有三种方法:

  1. f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y)=f_X(x)\cdot f_Y(y) f(x,y)=fX(x)fY(y) ,这个方法的使用条件在于需要知道联合概率密度函数,并且因为存在概率密度,所以X,Y一定是连续型随机变量。同时也可以反推,如果已知 X , Y X,Y X,Y独立且概率密度都存在,那么 X , Y X,Y X,Y的联合概率密度: f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y)=f_X(x)\cdot f_Y(y) f(x,y)=fX(x)fY(y)
  2. 利用X,Y的数字特征,比如期望 E ( X Y ) ≠ E ( X ) ⋅ E ( Y ) , c o v ( X , Y ) ≠ 0 E(XY)\neq E(X)\cdot E(Y), cov(X,Y) \neq 0 E(XY)=E(X)E(Y),cov(X,Y)=0等等,其实这些本质上还是关于期望的那一个公式,因为X,Y相关 ⇒ \Rightarrow X,Y不独立,而二维正态中,X,Y的独立和不相关是等价的。这个方法就是当数字特征比较方便求出的时候,题目中明显涉及到了期望方差的时候可以使用。
  3. 利用事件来判断独立性,这也是一个难点。简单来讲就是 F X ( x ) ⋅ F Y ( y ) = F ( x , y ) F_X(x) \cdot F_Y(y)=F(x,y) FX(x)FY(y)=F(x,y)如果我们把 X ⩽ x , Y ⩽ y X\leqslant x,Y\leqslant y Xx,Yy分别看作事件A,B的话,那么也可以写作 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B).这种方法不要求变量是连续的,离散也可以使用,重点在于用事件的表示方法来求解

3.4 二维正态分布

二维正态分布函数的必要条件,二维正态分布是一个比较偏的考点,但是也要求掌握,主要是如下四个必要条件的理解。
( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho ) (X,Y)N(μ1,μ2,σ12,σ22,ρ)
⇒ \Rightarrow X ∼ N ( μ 1 , σ 1 2 ) Y ∼ N ( μ 2 , σ 2 2 ) X \sim N(\mu_1,\sigma_1^2) \quad Y \sim N(\mu_2,\sigma_2^2) XN(μ1,σ12)YN(μ2,σ22)
⇒ \Rightarrow a X + B Y aX+BY aX+BY也服从正态分布
⇒ \Rightarrow ρ = 0 ⇔ X , Y \rho=0\Leftrightarrow X,Y ρ=0X,Y独立
⇒ \Rightarrow Z 1 = a X + B Y , Z 2 = c X + d Y Z_1=aX+BY,Z_2=cX+dY Z1=aX+BYZ2=cX+dY,那么 Z 1 , Z 2 Z_1,Z_2 Z1,Z2也服从二维正态分布

4. 随机变量的数字特征

4.1 常见分布的特征和性质

4.2 特殊的函数的数字特征

考试常常考察两类特殊的数字特征,一类是带绝对值的,还有另一类是带 m a x , m i n max,min max,min函数的。总结起来就是求一个新的分布 Z = f ( X , Y ) Z=f(X,Y) Z=f(X,Y)的期望或者方差。对于这类问题,我们一般有两种方法:

  1. 定义法
  2. 分布法:分布法就是先求 Z = f ( X , Y ) Z=f(X,Y) Z=f(X,Y)的分布,再根据定义求 Z Z Z的期望和方差,这种方法比较复杂,一般在 X , Y X,Y X,Y独立的时候使用。

5. 大数定律和中心极限定律

6. 数理统计基础

5.1 样本均值和样本方差

5.2 三大抽样分布

5.3 正态总体下的四个公式

7. 参数估计

7.1 矩估计

矩估计比较简单,不管是离散的和连续的变量,求解过程都是一样的,考研中一般会遇到两种情况:

  1. 总体分布中只有一个参数,直接令 X ‾ = E ( X ) \overline{X}=E(X) X=E(X)来求解即可。
  2. 总体分布中有两个未知参数,这个时候就需要用到二阶矩估计,令 X ‾ = E ( X ) , 1 n ∑ i = 1 n X i 2 = E ( X 2 ) [ 1 n ∑ i = 1 n ( X ‾ − X i 2 ) 2 = E ( X 2 ) ] \overline{X}=E(X),\frac{1}{n}\sum_{i=1}^{n}X_i^2=E(X^2)[\frac{1}{n}\sum_{i=1}^{n}(\overline{X}-X_i^2)^2=E(X^2)] X=E(X),n1i=1nXi2=E(X2)[n1i=1n(XXi2)2=E(X2)]也可以,这时候有两个方程,就可以求解两个参数了。

7.2 最大似然估计

8. 假设检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值