OTFS调制中的干扰分析

论文链接:https://ieeexplore.ieee.org/document/8424569/

摘要简单描述:

论文介绍了OTFS的基本输入输出关系,然后分析了使用理想波形以及矩形波成型的区别,区别就在于使用理想波形只存在多普勒间干扰(IDI),而使用矩形波形还会存在额外的载波间干扰(ICI)和符号间干扰(ISI)。

2.系统模型

这里作者首先给出了OTFS时频域的基本定义:

一个OTFS帧的时频域信号可以分别沿时域离散划分为N个长度为T的的块,沿频域离散划分为M个长度为\Delta f的块。所以一个OTFS帧的持续时间是T_{f}=NT,占据了B=M\Delta f的带宽。时频域信号划分如下图所示。

 发送和接收滤波器分别用g_{tx}(t)g_{rx}(t)表示,定义了它们的交叉模糊函数,如下

A_{g_{\mathrm{rx}}, g_{\mathrm{tx}}}(t, f) \triangleq \int g_{\mathrm{rx}}^{*}\left(t^{\prime}-t\right) g_{\mathrm{tx}}\left(t^{\prime}\right) e^{-j 2 \pi f\left(t^{\prime}-t\right)} d t^{\prime}

模糊函数本质上就是一个二维相关器(匹配滤波器),一维相关器只有时间一个变量,二维相关器则多了频率这个变量。所以模糊函数是一个关于时间和频率的函数,当接收滤波器的时间和频率都匹配上信道的时间和频率时才会达到A的最大值。

然后作者给出了OTFS时延多普勒域的基本定义:

OTFS信号在延迟-多普勒域(Delay-Doppler,DD)中生成,同样可以将DD域沿多普勒域离散划分为N个长度为\frac{1}{NT}的块,沿时延域离散划分为M个长度为\frac{1}{M\Delta f}的块。如下图所示。所以多普勒域的长度是\frac{1}{T},时延域的长度是\frac{1}{\Delta f},这两个参数也就决定了OTFS最大可支持的多普勒与时延。

 OTFS处理流程

论文里给出的调制解调流程如下图

OTFS输入输出关系

首先信号在DD域生成,然后经过经由ISFFT变换将信号转换到时频域,接下来应用海森堡变换将信号从时频域映射到时域。接收机执行相反的流程,首先将时域接收信号通过魏格纳变换映射回时频域信号,再经SFFT变换将信号转换回DD域。

ISFFT

X[n, m]=\frac{1}{\sqrt{N M}} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x[k, l] e^{j 2 \pi\left(\frac{n k}{N}-\frac{m l}{M}\right)}

可以理解为对l进行M点的DFT和对k进行N点的IDFTSFFT执行逆过程。

海森堡变换:

s(t)=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} X[n, m] g_{\mathrm{tx}}(t-n T) e^{j 2 \pi m \Delta f(t-n T)}

当采用矩形波时可以替换为OFDM调制。

时域信道建模为时间频率双选择性信道:

h(\tau, \nu)=\sum_{i=1}^{P} h_{i} \delta\left(\tau-\tau_{i}\right) \delta\left(\nu-\nu_{i}\right)

 其中P是信道径数,\tau_{i}表示第i径的信道时延,\nu_{i}表示第i径的多普勒频偏,h_{i}表示 第i径的幅度。

现在M通常较大,故时延域的颗粒度\frac{1}{M\Delta f}较细,于是我们认为信道每一径的时延都是\frac{1}{M\Delta f}的整数倍,故可以把每一径的时延表示为\tau_{i}=\frac{l_{\tau_{i}}}{M \Delta f},其中l_{\tau_{i}}是这一径的时延在时延域上的索引,即0,1,...,M-1。现在 N通常较小,故此时多普勒域的颗粒度\frac{1}{NT}较粗糙,不能再认为多普勒频移是\frac{1}{NT}的整数倍,而应该是\frac{1}{NT}的分数倍,即\nu_{i}=\frac{k_{\nu_{i}}+\kappa_{\nu_{i}}}{N T},其中k_{\nu_{i}}表示这一径多普勒的整数索引(0,1,...,N-1),\kappa_{\nu_{i}}表示这一径多普勒的小数部分(取值±0.5之间)。如果信道中含有分数倍多普勒,那么就称多普勒域上的信道就不再稀疏,而时延域上的信道依然稀疏。

基于以上内容,论文给出了OTFS的时频域分析

OTFS时频域输入输出关系(稀疏表示)

Y[n, m]=\sum_{n^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{M-1} H_{n, m}\left[n^{\prime}, m^{\prime}\right] X\left[n^{\prime}, m^{\prime}\right]-------(1)

 其中,

\begin{aligned} H_{n, m} & {\left[n^{\prime}, m^{\prime}\right] } \\ =& \iint h(\tau, \nu) A_{g_{\mathrm{rx}}, g_{\mathrm{tx}}}\left(\left(n-n^{\prime}\right) T-\tau,\left(m-m^{\prime}\right) \Delta f-\nu\right) \\ & \times e^{j 2 \pi\left(\nu+m^{\prime} \Delta f\right)\left(\left(n-n^{\prime}\right) T-\tau\right)} e^{j 2 \pi \nu n^{\prime} T} d \tau d \nu \end{aligned}

其中,\tau\nu分别处于区间(-\tau_{\max }, \tau_{\max })以及(-\nu_{\max }, \nu_{\max })内。该时频域信道响应就是整合了海森堡变换、时域信道响应以及魏格纳变换的响应,具体推导过程可以看论文附录A。

 3.理想脉冲的OTFS

首先给出满足双正交特性的波形条件:

 \begin{array}{r} \left.A_{g_{\mathrm{rx}}, g_{\mathrm{tx}}}(t, f)\right|_{t=n T+\left(-\tau_{\max }, \tau_{\max }\right), f=m \Delta f+\left(-\nu_{\max }, \nu_{\max }\right)}=\delta[n] \delta[m] q_{\tau_{\max }}(t) q_{\nu_{\max }}(f) \end{array}

 其中,当x\epsilon (-a,a)时,q_{a}(x)=1,否则为0。分两种情况讨论,当n和m都是不为0的整数时,因为T远大于\tau_{\max }\Delta f远大于\nu_{\max },所以此时两个q函数就都为0;当n和m都得0时,此时,两个q函数都为1,整个交叉模糊函数的值就是一个冲激。最后的结论是:两个满足双正交特性的波形的交叉模糊函数仅在(-\tau_{\max }, \tau_{\max })以及(-\nu_{\max }, \nu_{\max })内是一个冲激,其他区间内值都是0。但是根据雷达理论,不存在理想的模糊函数,即不存在仅仅只由冲激函数组成的模糊函数,再理想的模糊函数也是有旁瓣的,不可能像冲激函数一样。

基于理想脉冲的假设,论文分别分析了时频域与DD域的信道响应

时频域:将双正交波形的假设带入(1)中时频域信道响应的表达式,可见交叉模糊函数仅仅在n^{'}=nm^{'}=m时才有值,那么信道响应H也仅仅在n^{'}=nm^{'}=m时才有值,再带入(1)中。原本Y[n, m]应该由M*N项的和构成,采用理想波形后就仅剩下了一项,即

 Y[n, m]=H_{n, m}\left[n, m\right] X\left[n, m\right]

 DD域:先给出DD域的信道响应,同理,DD域的信道响应就是在时频域信道响应基础上加上ISFFTSFFT变换。可以证明,对于理想脉冲,DD域的输入输出关系如下

y[k, l]=\frac{1}{N M} \sum_{k^{\prime}=0}^{N-1} \sum_{l^{\prime}=0}^{M-1} x\left[k^{\prime}, l^{\prime}\right] h_{w}\left[k-k^{\prime}, l-l^{\prime}\right]-----(2)

 其中,h_{w}由下面的式子组成

h_{w}\left[k-k^{\prime}, l-l^{\prime}\right]=\left.h_{w}(\nu, \tau)\right|_{\nu=\frac{k-k^{\prime}}{N T}, \tau=\frac{l-l^{\prime}}{M \Delta f}}

 \begin{aligned} h_{w}(\nu, \tau) &=\sum_{i=1}^{P} h_{i} e^{-j 2 \pi \nu_{i} \tau_{i}} w\left(\nu-\nu_{i}, \tau-\tau_{i}\right) \\ &=\sum_{i=1}^{P} h_{i} e^{-j 2 \pi \nu_{i} \tau_{i}} \mathcal{G}\left(\nu, \nu_{i}\right) \mathcal{F}\left(\tau, \tau_{i}\right), \end{aligned}

 \mathcal{F}\mathcal{G}和分别由下式给出  

\mathcal{F}\left(\frac{l-l^{\prime}}{M \Delta f}, \tau_{i}\right)=\sum_{m^{\prime}=0}^{M-1} e^{j \frac{2 \pi}{M}\left(l-l^{\prime}-l_{\tau_{i}}\right) m^{\prime}}=\frac{e^{j 2 \pi\left(l-l^{\prime}-l_{\tau_{i}}\right)}-1}{e^{j \frac{2 \pi}{M}\left(l-l^{\prime}-l_{\tau_{i}}\right)}-1}

可以验证,只有当l-l^{'}-l_{\tau _{i}}等于0或者M的整数倍时,\mathcal{F}整个式子等于M,等于其他数(除了M)的整数倍的情况都是0。 

 \mathcal{G}\left(\frac{k-k^{\prime}}{N T}, \nu_{i}\right)=\frac{e^{-j 2 \pi\left(k-k^{\prime}-k_{\nu_{i}}-\kappa_{\nu_{i}}\right)}-1}{e^{-j \frac{2 \pi}{N}\left(k-k^{\prime}-k_{\nu_{i}}-\kappa_{\nu_{i}}\right)}-1} .

本来只要k-k^{'}-k_{\nu _{i}}-\kappa _{\nu _{i}}也等于0或者N的整数倍时,\mathcal{G}的整个式子也可以等于N, 等于其他数(除了N)的整数倍的情况都是0。但是现在由于小数倍频偏的存在,k-k^{'}-k_{\nu _{i}}-\kappa _{\nu _{i}}肯定不可能等于0或者N的整数倍,那么\mathcal{G}的整个式子就不等于0。

 这种存在小数倍多普勒频偏的情况也称为多普勒的弥散现象,现在再来看式(2),原本y[k, l]应该是M*N项的线性组合,现在由于时延不存在小数倍的情况,故y[k, l]可以简化为N项的和。由此可见,这N项全部是由同一时延的不同多普勒频偏项组成,所以有结论:当信道多普勒弥散时,同一时延上的不同多普勒符号间都会相互干扰,这种情况称作多普勒间干扰(IDI)。

如果此时恰好信道中的多普勒是整数倍的,那么就不会出现多普勒间干扰,y[k, l]也就只剩下了一项。

 4.矩形波形的OTFS

 基于理想波形无法实现这一事实,下面论文给出了通用的矩形波形的相关分析。矩形脉冲仅在[0,T]内有值,其余位置为0。

 时频域:同样从交叉模糊函数入手,观察(1)中的时频域信道响应,如下

\begin{aligned} H_{n, m} & {\left[n^{\prime}, m^{\prime}\right] } \\ =& \iint h(\tau, \nu) A_{g_{\mathrm{rx}}, g_{\mathrm{tx}}}\left(\left(n-n^{\prime}\right) T-\tau,\left(m-m^{\prime}\right) \Delta f-\nu\right) \\ & \times e^{j 2 \pi\left(\nu+m^{\prime} \Delta f\right)\left(\left(n-n^{\prime}\right) T-\tau\right)} e^{j 2 \pi \nu n^{\prime} T} d \tau d \nu \end{aligned}

根据信号与系统,两个矩形的卷积(相关)的结果是一个三角形,且仅仅在[-T,T]内有值。下面应用到模糊函数,前面说过交叉模糊函数等价于一个二维的相关器,那么二维相关器输出的就呈现出一个三角形,且仅仅在[-T,T]内有值。带入到A_{g_{\mathrm{rx}}, g_{\mathrm{tx}}}\left(\left(n-n^{\prime}\right) T-\tau,\left(m-m^{\prime}\right) \Delta f-\nu\right)中,可以得出:只有n^{'}=n以及n^{'}=n-1t才位于[-T,T]内,此时交叉模糊函数才不为0,其余时刻都为0。带 n^{'}=n以及n^{'}=n-1入(1)中,有如下式子

\begin{aligned} Y[n, m]=& \sum_{n^{\prime}=n-1}^{n} \sum_{m^{\prime}=0}^{M-1} H_{n, m}\left[n^{\prime}, m^{\prime}\right] X\left[n^{\prime}, m^{\prime}\right] \\ =& H_{n, m}[n, m] X[n, m] \\ &+\sum_{m^{\prime}=0, m^{\prime} \neq m}^{M-1} H_{n, m}\left[n, m^{\prime}\right] X\left[n, m^{\prime}\right] \\ &+\sum_{m^{\prime}=0}^{M-1} H_{n, m}\left[n-1, m^{\prime}\right] X\left[n-1, m^{\prime}\right] \end{aligned}

 首先,原来Y[n, m]M*N项,现在简化为2M项。第二个等式的前两项是n^{'}=n的情况,第三项是n^{'}=n-1的情况。其中,第一项是n^{'}=nm^{'}=m​​​​的情况,第二项是n^{'}=nm^{'}\neq m的情况。因此,第二项是同一符号其他载波的干扰,称为载波间干扰(ICI)。第三项是其他符号的所有子载波对当前符号的干扰,称为符号间干扰(ISI)。

DD域:DD域的输入输出关系如下,具体证明见附录C

\begin{array}{r} y[k, l] \approx \sum_{i=1}^{P} \sum_{q=-N_{i}}^{N_{i}} h_{i} e^{j 2 \pi\left(\frac{l-l_{\tau_{i}}}{M}\right)\left(\frac{k_{\nu_{i}}+\kappa_{\nu_{i}}}{N}\right)} \alpha_{i}(k, l, q) \\ \times x\left[\left[k-k_{\nu_{i}}+q\right]_{N},\left[l-l_{\tau_{i}}\right]_{M}\right] \end{array}----(3)

\begin{aligned} \alpha_{i}(k, l, q) &=\left\{\begin{array}{ll} \frac{1}{N} \beta_{i}(q) & l_{\tau_{i}} \leq l<M \\ \frac{1}{N}\left(\beta_{i}(q)-1\right) e^{-j 2 \pi \frac{\left[k-k_{\nu_{i}}+q\right]_{N}}{N}} & 0 \leq l<l_{\tau_{i}} \end{array}\right.\\ \beta_{i}(q) &=\frac{e^{-j 2 \pi\left(-q-\kappa_{\nu_{i}}\right)}-1}{e^{-j \frac{2 \pi}{N}\left(-q-\kappa_{\nu_{i}}\right)}-1} \end{aligned}

 注意到(3)中的指数项,从时频域到DD域的转换将ICIISI转换为了一个相位差。

  • 8
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Girl_We_Got_A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值