YOLOv8改进 | 主干网络 | 将主干网络替换为轻量化的ShuffleNetv2【原理 + 完整代码】

125 篇文章 60 订阅 ¥159.90 ¥299.90
本文详细介绍了如何将ShuffleNetv2网络结构应用于YOLOv8,以优化计算资源和提高效率。通过讲解ShuffleNetv2的原理、核心模块和优化策略,以及提供逐步的代码实现教程,读者可以学习到如何将ShuffleNetv2整合到YOLOv8中,实现轻量化的目标检测模型。同时,文中还分享了完整的代码资源,便于读者实践。
摘要由CSDN通过智能技术生成

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录:《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进


目标检测是计算机视觉中一个重要的下游任务。对于边缘盒子的计算平台来说,一个大型模型很难实现实时检测的要求。基于一系列消融实验,研究者提出了几个实用的网络设计效率指导原则。据此,提出了一种新的架构,称为ShuffleNetV2。在本文中,给大家带来的教程是将原来的主干网络中的特征提取网络替换为shufflenetv2网络。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转

目录

1.原理

2. ShuffleNetv2的代码实现

2.1 将ShuffleNetv2添加到YOLOv8中

2.2 更改init.py文件

2.3 在task.py中进行注册

2.4 添加yaml文件

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值