高斯白噪声的统计表示

实高斯白噪声向量

零均值的实高斯白噪声向量 x ⃗ ( t ) = [ x 1 ( t ) , ⋯   , x m ( t ) ] T \vec x\left(t\right ) = [x_{1}\left ( t \right ),\cdots, x_{m}\left ( t \right )]^{\mathrm{T}} x (t)=[x1(t),,xm(t)]T的各个元素为相互统计不相关的实高斯白噪声过程。若这些高斯白噪声具有相同的方差 σ 2 \sigma ^{2} σ2,则有 c x i , y i = r x i , y i = { σ 2 , if  i = j 0 , if  i ≠ j c_{x_{i},y_{i}}=r_{x_{i},y_{i}}=\begin{cases} \sigma ^{2} , & \text{if }i=j \\ 0, & \text{if }i\ne j \end{cases} cxi,yi=rxi,yi={σ2,0,if i=jif i=j式中, c x i , y i = E { [ x i ( t ) − μ x i ] [ y j ( t ) − μ y j ] ∗ } c_{x_{i},y_{i}}=E \left \{ [x_{i} (t)-\mu_{x_{i} }][y_{j} (t)-\mu_{y_{j}}]^{* } \right \} cxi,yi=E{[xi(t)μxi][yj(t)μyj]}是随机变量 x i ( t ) x _{i}(t) xi(t) y i ( t ) y _{i}(t) yi(t)之间的互协方差, r x i , y i = E [ x i ( t ) y j ∗ ( t ) ] r_{x_{i},y_{i}}=E[ x _{i}(t) y _{j}^{*} (t) ] rxi,yi=E[xi(t)yj(t)]是随机变量 x i ( t ) x _{i}(t) xi(t) y i ( t ) y _{i}(t) yi(t)之间的互相关。于是,实高斯白噪声向量的自协方差矩阵 C x = R x = E { x ⃗ ( t ) x ⃗ T ( t ) } = [ r x 1 , x 1 ⋯ r x 1 , x m ⋮ ⋱ ⋮ r x m , x 1 ⋯ r x m , x m ] = σ 2 I \boldsymbol C_{x} =\boldsymbol R_{x}=\mathrm{E}\left \{ \vec x\left ( t \right )\vec x^{\mathrm{T} } \left ( t \right ) \right \}=\begin{bmatrix} r_{x_{1},x_{1} } & \cdots & r_{x_{1},x_{m}}\\ \vdots & \ddots & \vdots\\ r_{x_{m},x_{1}} & \cdots &r_{x_{m},x_{m}} \end{bmatrix} =\sigma ^{2}\boldsymbol I Cx=Rx=E{x (t)x T(t)}=rx1,x1rxm,x1rx1,xmrxm,xm=σ2I因此,实高斯白噪声的统计表示为 E { x ⃗ ( t ) } = 0 \mathrm{E}\left \{\vec x\left ( t \right ) \right \} =\bf 0 E{x (t)}=0 E { x ⃗ ( t ) x ⃗ T ( t ) } = σ 2 I \mathrm{E}\left \{ \vec x\left ( t \right )\vec x^{\mathrm{T} } \left ( t \right ) \right \}=\sigma ^{2}\boldsymbol I E{x (t)x T(t)}=σ2I

复高斯白噪声向量

复高斯随机向量 x ⃗ ( t ) = [ x 1 ( t ) ⋮ x m ( t ) ] \vec x\left(t\right ) =\begin{bmatrix} x_{1}\left ( t \right ) \\\vdots \\x_{m}\left ( t \right ) \end{bmatrix} x (t)=x1(t)xm(t)的每个元素都是复高斯白噪声,它们彼此统计不相关。若他们都具有零均值和相同的方差 σ 2 \sigma ^{2} σ2,则意味着每一个复高斯白噪声过程的实部 x R k ( t ) x_{\mathrm{R} k} \left ( t \right ) xRk(t)和虚部 x I k ( t ) x_{\mathrm{I} k} \left ( t \right ) xIk(t)是两个相互统计独立的实高斯白噪声过程,它们具有相同的方差。因此 x k ( t ) x_{ k} \left ( t \right ) xk(t)为零均值和方差 σ 2 \sigma ^{2} σ2的高斯白噪声过程,也意味着 E { x R k ( t ) } = 0 ,   E { x I k ( t ) } = 0 \mathrm{E} \left \{ x_{\mathrm{R} k} \left ( t \right ) \right \} =0,\text{ } \mathrm{E} \left \{ x_{\mathrm{I} k} \left ( t \right ) \right \} =0 E{xRk(t)}=0, E{xIk(t)}=0 E { x R k 2 ( t ) } = E { x I k 2 ( t ) } = 1 2 σ 2 \mathrm{E} \left \{ x_{\mathrm{R} k}^{2} \left ( t \right ) \right \} =\mathrm{E} \left \{ x_{\mathrm{I} k}^{2} \left ( t \right ) \right \} =\frac{1}{2}\sigma ^{2} E{xRk2(t)}=E{xIk2(t)}=21σ2 E { x R k ( t ) x I k ( t ) } = 0 \mathrm{E} \left \{ x_{\mathrm{R} k} \left ( t \right ) x_{\mathrm{I} k} \left ( t \right )\right \}=0 E{xRk(t)xIk(t)}=0 E { x k ( t ) x k ∗ ( t ) } = E { x R k 2 ( t ) } + E { x I k 2 ( t ) } = σ 2 \mathrm{E} \left \{ x_{k} \left ( t \right ) x_{k}^{*} \left ( t \right )\right \}=\mathrm{E} \left \{ x_{\mathrm{R} k}^{2} \left ( t \right ) \right \} +\mathrm{E} \left \{ x_{\mathrm{I} k}^{2} \left ( t \right ) \right \}=\sigma ^{2} E{xk(t)xk(t)}=E{xRk2(t)}+E{xIk2(t)}=σ2由上述条件可知 E { x k 2 ( t ) } = E { [ x R k ( t ) + j x I k ( t ) ] 2 } = E { x R k 2 ( t ) } − E { x I k 2 ( t ) } + j 2 E { x R k ( t ) x I k ( t ) } = 1 2 σ 2 − 1 2 σ 2 + 0 = 0 \begin{aligned} \mathrm{E}\left\{x_{k}^{2}(t)\right\} &=\mathrm{E}\left\{\left[x_{\mathrm{R} k}(t)+\mathrm{j} x_{\mathrm{I} k}(t)\right]^{2}\right\} \\ &=\mathrm{E}\left\{x_{\mathrm{R} k}^{2}(t)\right\}-\mathrm{E}\left\{x_{\mathrm{I} k}^{2}(t)\right\}+\mathrm{j} 2 \mathrm{E}\left\{x_{\mathrm{R} k}(t) x_{\mathrm{I} k}(t)\right\} \\ &=\frac{1}{2} \sigma^{2}-\frac{1}{2} \sigma^{2}+0=0 \end{aligned} E{xk2(t)}=E{[xRk(t)+jxIk(t)]2}=E{xRk2(t)}E{xIk2(t)}+j2E{xRk(t)xIk(t)}=21σ221σ2+0=0由于 x 1 ( t ) , ⋯   , x m ( t ) x_{1}\left ( t \right ),\cdots,x_{m}\left ( t \right ) x1(t),,xm(t) m m m个彼此不相关的高斯白噪声过程,故 E { x i ( t ) x j ( t ) } = 0 , E { x i ( t ) x j ∗ ( t ) } = 0 , i ≠ j \mathrm{E}\left\{x_{i}(t) x_{j}(t)\right\}=0, \quad \mathrm{E}\left\{x_{i}(t) x_{j}^{*}(t)\right\}=0, \quad i \neq j E{xi(t)xj(t)}=0,E{xi(t)xj(t)}=0,i=j综合以上条件,即可得到复高斯白噪声向量 x ⃗ ( t ) \vec x(t) x (t)的统计表示为 E { x ⃗ ( t ) } = 0 E { x ⃗ ( t ) x ⃗ H ( t ) } = σ 2 I E { x ⃗ ( t ) x ⃗ T ( t ) } = O \begin{aligned} \mathrm{E}\{\vec{x}(t)\} &=\mathbf{0} \\ \mathrm{E}\left\{\vec{x}(t) \vec{x}^{\mathrm{H}}(t)\right\} &=\sigma^{2} \boldsymbol{I} \\ \mathrm{E}\left\{\vec{x}(t) \vec{x}^{\mathrm{T}}(t)\right\} &=\bf{O} \end{aligned} E{x (t)}E{x (t)x H(t)}E{x (t)x T(t)}=0=σ2I=O

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Girl_We_Got_A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值