Noisy ICA原理

现实生活中,总有一些噪音存在于观测中。
ICA模型也许需要考虑噪声项。
但是,在有噪声的情况下,混合矩阵的估计是相当困难的。

在noisy ICA中,我们也遇到了一个新的问题:独立分量的无噪声实现的估计。

noisy ICA的模型可以这样表示:
x = A s + n x=As+n x=As+n
n就是噪声向量。
关于n有一些假设需要注意:

  1. 噪声与独立分量无关。
  2. 噪声是高斯分布。
    并且经常假设噪声的协方差是已知的。 Σ = σ 2 I \Sigma=\sigma^2I Σ=σ2I

sensor noise vs. source noise

sourece noise: x = A ( s + n ) x=A(s+n) x=A(s+n)
对于这样的噪声模型,set s ~ = s + n \tilde{s}=s+n s~=s+n s ~ \tilde{s} s~依然保持非高斯和独立性,这样的话,我们仍然可以使用basic ICA去估计noisy ICs。然而,从噪声分量中估计原始独立分量是一个额外的问题。

sensor nosie: x = A s + n x=As+n x=As+n
在这种情况下,我们可以把噪声的协方差转化成如下形式:
Σ = A A T σ 2 \Sigma=\bm{A}\bm{A}^T\sigma^2 Σ=AATσ2
n ~ = A − 1 n \tilde{n}=\bm{A}^{-1}n n~=A1n
x = A s + A n ~ = A ( s + n ~ ) x=\bm{A}s+\bm{A}\tilde{n}=\bm{A}(s+\tilde{n}) x=As+An~=A(s+n~)

总的来说,如果噪声是加到独立分量中而不是加到观测混合物中,或具有特定的协方差结构,则混合矩阵可以用普通ICA方法估计。

较少的噪声来源

特别地,如果它们的总数(噪声和独立成分的数量)不大于混合观测的数目,我们又有一个普通的ICA模型,其中一些成分是高斯噪声,另一些是真正的独立成分。这种情况下可以用basic ICA。
s ~ = ( s 1 , . . . , s k , n 1 , . . . , n l ) \tilde{s}=(s_1,..., s_k, n_1,...,n_l) s~=(s1,...,sk,n1,...,nl)
s是“real”ICs, n是噪声。
利用basic ICA,估计前k个最非高斯方向,就可以估算出real ICs。
我们不能估计其余的哑独立分量,它们实际上是噪声变量,但我们一开始就不想估计它们。

这种方法的局限性在于:
我们一般假设noise 是附加在混合观测上,因此k+l一般是大于缓和观测的数量的,这个时候basic ICA一般是不能解决这个问题的。

混合矩阵的估计

偏差消除技术

能最有前途的方法是噪声ICA是由偏见消除技术。
这意味着对普通的(无噪声)ICA方法进行了修改,从而消除或至少降低了由于噪声引起的偏差。
如果我们有不受高斯噪声影响的非高斯性度量,或者至少可以从噪声观测中很容易地估计原始数据的值,那就好了。
定义没有观测的项:
v = A s \bm{v}=\bm{As} v=As
有观测噪声混合噪声就可以表示为
x = v + n \bm{x}=\bm{v}+\bm{n} x=v+n
现在要解决的问题变成:
w T x = w T v + w T n w^Tx=w^Tv+w^Tn wTx=wTv+wTn
测量右式一项的非高斯性,并且免受右式二项的噪声的影响。

峰度的偏差消除

如果用kurtosis来测量非高斯性是可行的,kurtosis对高斯噪声免疫。
k u r t ( w T x ) = k u r t ( w T v ) kurt(w^Tx)=kurt(w^Tv) kurt(wTx)=kurt(wTv)
但必须注意,在初步whitening时,必须考虑噪音的影响;如果已知噪声协方差矩阵,这就很简单了。
观测混合观测噪声的协方差:
C = E ( x x T ) C=E(xx^T) C=E(xxT)
那么whitening的公式就必须要改成:
x ~ = ( C − Σ ) − 1 / 2 x \tilde{x}=(C-\Sigma)^{-1/2}x x~=(CΣ)1/2x
C − Σ C-\Sigma CΣ是noise-free data的协方差矩阵
(
basic版本的是:
whitening变化矩阵: V = E D − 1 / 2 E T V=ED^{-1/2}E^T V=ED1/2ET
满足:
E ( x x T ) = E D E T E(xx^T)=EDE^T E(xxT)=EDET
)

whitening之后的模型变成:
x ~ = B s + n ~ \tilde{x}=Bs+\tilde{n} x~=Bs+n~
B正交, n ~ \tilde{n} n~是原始noise的线性组合。
这样的一个模型就可以用basic的kurtosis测量方法的ICA计算了。

bais消除的一般nongaussianity的测量方法。

相比于kurtosis更好的测量方法
在这里插入图片描述G是一个充分正则的非二次函数。v是标准正态分布变量。
set z是一个非高斯随机变量 。
现在主要的问题编程寻找
E { G ( z ) } E\{G(z)\} E{G(z)} E { G ( z + n ) } E\{G(z+n)\} E{G(z+n)}
的关系。
一个简化的方法是将G设为
0均值的高斯随机变量的密度函数或相关函数——非多项式矩(高斯矩)。
在这里插入图片描述
0均值高斯密度函数with方差 c 2 c^2 c2
φ c ( k ) \varphi_c^{(k)} φc(k)代表k阶导数
φ c ( − k ) \varphi_c^{(-k)} φc(k)代表k阶积分:
φ c ( − k ) ( x ) = ∫ 0 x φ c ( − k + 1 ) ( ξ ) d ξ \varphi_c^{(-k)}(x)=\int_0^x\varphi_c^{(-k+1)}(\xi)d\xi φc(k)(x)=0xφc(k+1)(ξ)dξ

重要理论(Theorem 15.1)
在这里插入图片描述所以式15.11可以转化为
在这里插入图片描述在这里插入图片描述总结一下:
在这里插入图片描述
basic的核心算法:
在这里插入图片描述
总结下来:
basic ICA和noisy ICA的不同主要体现在两点上:

  1. whiten的V不同
  2. 迭代中一个方程不同

高阶累积量方法

高阶累积量不受高斯噪声的影响
通常使用的阶数为6.
缺点:实际上,当阶数>4,累积量就容易受outliers的影响。
有点:不需要噪声的协方差。

最大似然法

在这里插入图片描述C是无关常数。
在这里插入图片描述
f i f_i fi是独立分量的概率密度函数(pdf)的对数
缺点:计算成本大,计算复杂度随数据的维数呈指数增长。
研究点:使用偏差消除技术,来修改现有的ML算法,使之与有噪声的数据一致。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值