Gephi学习问题记录(自看)

  • 不小心把workspace窗口关了

解决方法:Window→reset windows

  • 还能从数据库、网站、邮件中进行数据导入

逐渐高端,暂时用不着,用的时候再研究

  • Gephi支持有时间流的数据,并能以动态时间流的方式来呈现,这种动态数据也可以用gephi来自动生成(来作为练习资料)
  • 节点的移动(点击小手图表)   移动整个图形(按住鼠标右键) 
  • 节点的放大与缩小(单个节点、部分节点、全部节点)
  • 调整节点的颜色(单个节点、部分节点-矩形和颜料桶两种方法、全部节点)
  • ranking   根据一些值对节点和标签进行归类和排序,并把排序以大小、颜色的形式应用到节点和标签上。
  • Layout  根据一些规则自动美化图形
  • Statistics  根据内置的算法对节点和边的属性值做运算,并把运算结果存入节点和边的属性里面,供分割和排名使用。    
  • Partition  把节点中,值相同的节点归为一类并以不同的颜色区分。
  • Filters  按照设定的方式筛选符合条件节点或边
  • Statistics为ranking和partition提供数据,但不会直接使图形发生变化。
  • ranking和partition既可以使用自己的数据改变图形,也可以使用Statistics的数据改变图形;ranking单独可以使用,partition在数据够多时才能不依赖statistics的数据使用
  • Ranking   

 

### 使用 Gephi 进行社会网络分析 #### 安装与启动 Gephi 是一款跨平台的工具,支持 Windows、Linux 和 Mac OS 系统。由于采用 Java 开发,安装过程相对简单[^4]。 #### 导入数据 为了进行社会网络分析,首先需要准备合适的数据集。常见的数据格式包括 CSV 文件,这些文件可以通过多种方式获取,例如从社交媒体API抓取或已有研究资料中提取。一旦准备好数据,就可以利用 Gephi 提供的功能将其导入到程序中。 ```python import csv def read_csv(file_path): with open(file_path, newline='') as csvfile: reader = csv.DictReader(csvfile) data = [row for row in reader] return data ``` 这段 Python 代码展示了如何读取 CSV 文件的内容并转换成列表形式以便进一步处理。虽然这不是直接用于 Gephi 中的操作,但在预处理阶段可能会有所帮助。 #### 数据清洗与预处理 在正式开始分析之前,通常还需要对原始数据做一些必要的清理工作,比如去除重复项、填补缺失值等操作。这一步骤能够提高后续分析的质量和准确性。 #### 构建网络模型 当数据被成功加载后,在 Gephi 内部可以定义节点(代表个体)以及边(表示两者之间的联系)。对于每一对关联的对象之间建立一条连接线,并赋予一定的权重来反映它们之间互动强度的不同程度[^1]。 #### 应用布局算法 为了让图形更加直观易懂,可以选择不同的布局方法调整各个顶点的位置分布情况。常用的有 ForceAtlas2 或者 Fruchterman-Reingold 布局法,前者适合大规模图谱展示;后者则更适用于小型密集型社群结构呈现[^2]。 #### 计算统计指标 除了视觉上的观察外,还可以借助内置的各种测量函数深入挖掘潜在规律特征。例如计算每个成员所拥有的邻接数目即所谓的“度数中心性”,以此评估他们在整个群体里扮演的角色地位高低差异[^5]: \[ C_D(v)=\frac{deg(v)}{(n-1)} \] 其中 \( deg(v) \) 表示 v 节点与其他所有节点相连的数量总和;\( n \) 则指代整体样本规模大小。 #### 结果解释与报告撰写 最后根据所得出的各项参数综合判断目标对象间存在的内在逻辑关系,并形成书面文档记录下主要发现成果分享给其他相关人员审阅交流学习之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值