【R语言+Gephi】利用R语言和Gephi实现共发生网络的可视化

【R语言+Gephi】利用R语言和Gephi实现共发生网络的可视化

注:本文仅作为自己的学习记录以备以后复习查阅

一 概述

Gephi是一款开源免费的多平台网络分析软件,在Windows、Linux和Mac os上均可以运行,像他们官网所说的,他们致力于创造像Photoshop一样的图表绘制软件。

软件特点如下:

符合人体工程学的界面:无需编程技能

高性能:内置渲染引擎。

原生文件格式:GDF (GUESS)、GraphML (NodeXL)、GML、NET (Pajek)、GEXF 等。

可通过插件进行自定义:布局、指标、数据源、操作工具、渲染预设等。

Gephi官方下载地址:https://gephi.org/users/download/
在这里插入图片描述

二 Gephi网络可视化及美化

在Gephi中我们可以通过边文件点文件创建网络图,步骤如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
此时可以对网络图进行美化,Fruchterman Reingold是最常用的网络布局,当然大家也可以试试看其他的布局运行出来是什么样的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在统计模块,我们可以进行如下图所示的计算,这些也是比较常用的,大家可以根据自己的需求进行计算:

### 解读描述 Gephi 绘制的微生物网络图 #### 微生物网络的基础概念 微生物网络是一种用于展示不同微生物之间同出现模式的图表。这种网络能够揭示微生物群落内部复杂的交互关系,有助于理解生态系统的结构与功能。通过分析这些网络中的节点(代表不同的微生物物种)以及连接它们的边(表示两两之间的关联强度),可以深入了解特定环境中微生物间的协同作用或竞争机制。 #### 使用Gephi生成的微生物网络特点 Gephi作为一款强大的开源工具,在处理此类复杂数据集方面表现出色[^1]。当利用该平台构建并呈现一个基于实际样本得到的微生物存模型时: - **节点(Node)**:每一个圆圈或其他形状都代表着一种独特的微生物分类单元(OTU),即操作分类单位。通常情况下,较大的节点意味着更高的丰度或者是更显著的存在感。 - **边缘(Edge)**:线条用来指示两个节点间存在统计学意义上的正向或者负向联系。如果两条线段颜色较深,则表明两者之间的生程度更高;反之则可能暗示着拮抗效应。此外,还可以设置不同的属性来区分各类互动形式,例如化学信号传递、物质交换等特性[^2]。 #### 数据准备过程概述 为了创建上述类型的可视化效果,研究者们往往需要先准备好相应的输入资料——具体来说就是所谓的“边文件(edge file)”与“点文件(node file)”。前者记录了每一对感兴趣的实体及其相互影响的程度参数;后者包含了关于各个独立个体的基本信息,像名称编号之类的标识符。 ```python import pandas as pd # 假设我们有一个CSV格式的边列表 edges_df = pd.read_csv('edge_file.csv') # 查看前几行以确认加载成功 print(edges_df.head()) ``` #### 结果阐释指南 一旦完成了绘图工作之后,下一步便是仔细审视所得图像所传达的信息: - 关注那些处于中心位置且拥有众多连线指向自己的超级传播者型节点; - 寻找集群现象,这可能是由于某些局部区域内的成员彼此紧密相连而形成的子团体; - 考虑到色彩编码方案的选择对于直观感受的影响很大,因此务必留意开发者是如何运用色调差异去强调重点部分或是划分层次级别的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值