题目描述
zsyzgu是一个弱菜,尽管如此他还是参加了智能体系列赛。智能体系列赛的问题经简化后是这样的,有一只猴子和一些矿点,知道他们在平面上的坐标,这只猴子要经过这些矿点至少一次。假设这只猴子从点A走到点B所要花费的步数是这两个点的曼哈顿距离(即|A.x-B.x|+|A.y-B.y|),问这只猴子经过这些矿点至少一次所需的最少步数。
系列赛中的许多选手都用了贪心的策略,即每次都到最近的没经过的矿点去。但zsyzgu的思路是搜索,这也是他能够摆脱垫底命运获得纪念版T-shirt的原因。
输入格式
第一行两个数表示猴子的坐标;
第二行一个数n表示矿点数;
接下来n行每行两个数表示每个矿点的坐标。
输出格式
一行一个数表示最少步数。
样例输入
0 0
4
0 1
0 2
0 3
0 -2
样例输出
7
数据规模和约定
对于100%的数据:1<=n<=10,横纵坐标都是整数,其的绝对值<=10000。
思路分析
典型dfs模板题,没什么可分析的
代码
import java.util.Scanner;
public class tigao_智能体系列赛 {
static int n;
static int []x;
static int []y;
static int []flag;
static int sum=Integer.MAX_VALUE;
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int a=in.nextInt();
int b=in.nextInt();
n=in.nextInt();
x=new int[n];
y=new int[n];
flag=new int[n];
for(int i=0;i<n;i++)
{
x[i]=in.nextInt();
y[i]=in.nextInt();
flag[i]=0;
}
for(int i=0;i<n;i++)
{
int ans=Math.abs(x[i]-a)+Math.abs(y[i]-b);
flag[i]=1;
dfs(1,ans,i);
flag[i]=0;
}
System.out.println(sum);
}
private static void dfs(int k, int ans,int u) {
if(k==n)
{
if(ans<sum)
sum=ans;
return ;
}
else{
for(int i=0;i<n;i++)
{
if(flag[i]==0)
{
ans+=Math.abs(x[i]-x[u])+Math.abs(y[i]-y[u]);
flag[i]=1;
dfs(k+1,ans,i);
flag[i]=0;
ans-=Math.abs(x[i]-x[u])+Math.abs(y[i]-y[u]);
}
}
return ;
}
}
}