673. 最长递增子序列的个数
给定一个未排序的整数数组,找到最长递增子序列的个数。
- 示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
- 示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
- 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。
数组定义
dp[i]代表以nums[i]结尾的最长递增子序列的长度,而len[i]则代表子序列的个数
状态转移
- dp[j]+1>dp[i]
当发现更长子序列的时候,刷新最长子序列的长度以及对应的个数 - dp[j]+1==dp[i]
当发现相同长度的递增子序列,我们对应的子序列个数就需要增加
初始化
将dp[i],len[i]全部置为1,因为只有一个元素也能算一个子序列
代码
class Solution {
public int findNumberOfLIS(int[] nums) {
int n=nums.length,max=1,res=0;
int[] dp=new int[n];
int[] len=new int[n];
Arrays.fill(dp,1);
Arrays.fill(len,1);
for(int i=1;i<n;i++){
for(int j=i-1;j>=0;j--)
{
if(nums[i]>nums[j])
{
if(dp[j]+1>dp[i])
{
dp[i]=dp[j]+1;
len[i]=len[j];
}else if(dp[j]+1==dp[i])
{
len[i]+=len[j];
}
}
} max=Math.max(dp[i],max);
}
for(int i=n-1;i>=0;i--)
if(dp[i]==max)
res+=len[i];
return res;
}
}