673. 最长递增子序列的个数

673. 最长递增子序列的个数

给定一个未排序的整数数组,找到最长递增子序列的个数。

  • 示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

  • 示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

  • 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。

数组定义

dp[i]代表以nums[i]结尾的最长递增子序列的长度,而len[i]则代表子序列的个数

状态转移

  • dp[j]+1>dp[i]
    当发现更长子序列的时候,刷新最长子序列的长度以及对应的个数
  • dp[j]+1==dp[i]
    当发现相同长度的递增子序列,我们对应的子序列个数就需要增加

初始化

将dp[i],len[i]全部置为1,因为只有一个元素也能算一个子序列

代码

class Solution {
    public int findNumberOfLIS(int[] nums) {

        int n=nums.length,max=1,res=0;
        int[] dp=new int[n];
        int[] len=new int[n];
        Arrays.fill(dp,1);
        Arrays.fill(len,1);
        for(int i=1;i<n;i++){
                    for(int j=i-1;j>=0;j--)
            {
                if(nums[i]>nums[j])
                {
                    if(dp[j]+1>dp[i])
                    {
                        dp[i]=dp[j]+1;
                        len[i]=len[j];
                    }else if(dp[j]+1==dp[i])
                    {
                        len[i]+=len[j];
                    }
                }
                 
            }     max=Math.max(dp[i],max);
        }

        for(int i=n-1;i>=0;i--)
            if(dp[i]==max)
                res+=len[i];
         
       return res;
    } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值