RFS自学笔记(二):理论测量模型——不含杂波但带有检测概率

理论测量模型是不考虑杂波的,其测量值用 O k O_k Ok表示;而实际测量模型是考虑杂波的,其测量值用 Z k Z_k Zk表示,其中 Z k Z_k Zk= ( O k , C k ) (O_k,C_k) (Ok,Ck),这里的 C k C_k Ck表示的是杂波。很显然,这里主要是把传感器实际测得数据 Z k Z_k Zk拆分成了两部分分别建模以方便后续的处理。现在学习理论测量模型 O k O_k Ok所对应的概率 P ( O k ∣ X k ) P(O_k|X_k) P(OkXk)的推导和计算。

理论测量模型主要分为两部分:
1.判断是否检测到了物体,检测到的概率是 P D ( X k ) P^D(X_k) PD(Xk)。—— 这个在前面讲解贝叶斯滤波的时候显然没有考虑,贝叶斯滤波那边默认的是传感器总是能够检测到物体的,然而实际上会存在传感器漏检的情况。这里就是把漏检的情况考虑进去了。
2.确定能够检测到物体后,判断此次测量值的概率分布即 g k ( O k ∣ X k ) g_k(O_k|X_k) gk(OkXk).

然后得到理论测量模型的概率分布: P ( o k ∣ x k ) = { 1 − P D ( x k ) o k = n o n e P D ( x k ) g k ( o k ∣ x k ) o k = O k P(o_k|x_k)=\left\{\begin{matrix} 1-P^D(x_k)&o_k=none\\ P^D(x_k)g_k(o_k|x_k)& o_k=O_k \end{matrix}\right. P(okxk)={1PD(xk)PD(xk)gk(okxk)ok=noneok=Ok

如果你能很好的理解这个公式,那么就不必看下面的了。接来来主要是对这个公式的详细说明和解释:

首先是提出几个问题:
1. g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk)的具体含义是什么?是否隐含有“保证已检测到”这个前提?
2. P ( o k ∣ x k ) P(o_k|x_k) P(okxk) g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk) P D ( X k ) P^D(X_k) PD(Xk)的关系如何用事件来进行更清楚的分析?
3. P ( o k ∣ x k ) P(o_k|x_k) P(okxk)的全区间上的无穷积分的值是否为1?

按照这个公式我们是这样理解的(以相机为例):在每次不含杂波的观测中,我们是分两步进行的,首先是判断这次相机是否能够检测到物体,如果没有检测到物体就相当于没有“可用光线”进入相机,那么相机后续发生的也就不用管了,此次检测的概率就是 1 − P D ( x k ) 1-P^D(x_k) 1PD(xk)即失败概率。如果这次相机检测到物体了即有“可用光线”进入相机,那么接下来这些“可用光线”会在相机内部产生反应从而产生测量值 o k o_k ok,至于这个测量值 o k o_k ok到底和真实值 x k x_k xk相差多少、方差是多少等,显然是要用相应的概率分布来描述了: g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk)表示的就是测量值 o k o_k ok和真值 x k x_k xk之间的关系,反映出相机内部的测量精度。比如说,我们最常用的正态分布,有时为了简化模型,我们可以认为 g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk)符合的就是正态分布,其中自变量是 o k o_k ok,参照量是 x k x_k xk.

按这样解释的话,似乎说的过去——不过就是一个分成两步进行的事件罢了:先分情况讨论,再在每个情况下逐个计算每一步的概率,然后把每一步的概率相乘就得到了这个情况下的最终概率。这样依次计算每种情况下的概率值。

如果是这样的话,那么在没有检测到物体时即没有“可用光线”时:第一步的概率是 1 − P D ( x k ) 1-P^D(x_k) 1PD(xk),那么第二步的概率不应该是0吗??

如果按照所谓的“可用光线”的说法,那么 g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk)中是否隐含有“保证已经检测到物体”这个前提呢?
g k ( o k ) g_k(o_k) gk(ok)表示什么?表示测量值是 o k o_k ok的概率——在能够检测到物体的前提下,测量值是 o k o_k ok的概率——这样说似乎不违和。另一种说法:不管你这次有没有检测到物体(没检测到就把 o k o_k ok赋为none),你能够使测量值为 o k o_k ok的概率——这里把未检测到的情况强行“数值化为none”以方便表示,但是实际上none和其他正常测到的值是具备不同性质的,还是要分成两种情况来说明和表示的。之所以有这两种说法,在于建立传感器的理论测量模型时的不同——有的认为含有这个前提,有的认为不含有,这样一来,两个模型实际上是有所不同的。

如果含有这个前提: g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk):在保证能够检测到物体的前提下(恰好承接第一步的是否检测到物体),给定 x k x_k xk而传感器测出的是 o k o_k ok的概率,或者说有多大概率会测成 o k o_k ok
如果不含有这个前提: g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk):不管这次能不能测得到物体(把没有测到的情况也考虑进去),给定 x k x_k xk而传感器测出的是 o k o_k ok的概率,或者说有多大概率会测成 o k o_k ok。显然这时多了一个“没测到”的情况。

假设用含有这个前提进行建模,用事件来分析他们之间的关系:
事件A:检测到物体即对应 P D ( x k ) P^D(x_k) PD(xk)
事件B:能检测到的前提下,给定 x k x_k xk而传感器测出的是 o k o_k ok即对应 g k ( o k ∣ x k ) g_k(o_k|x_k) gk(okxk)
事件C:毫无前提时给定 x k x_k xk而传感器测出的是 o k o_k ok P ( o k ∣ x k ) P(o_k|x_k) P(okxk)

P ( B ) = P ( C ∣ A ) P(B)=P(C|A) P(B)=P(CA)
再根据贝叶斯公式可得 P ( B ) = P ( C ∣ A ) = P ( A ∣ C ) P ( C ) P ( A ) P(B)=P(C|A)=\frac{P(A|C)P(C)}{P(A)} P(B)=P(CA)=P(A)P(AC)P(C)
P ( C ) = P ( B ) P ( A ) P ( A ∣ C ) P(C)=\frac{P(B)P(A)}{P(A|C)} P(C)=P(AC)P(B)P(A)
P ( o k ∣ x k ) = g k ( o k ∣ x k ) P D ( x k ) P ( A ∣ C ) P(o_k|x_k)=\frac{g_k(o_k|x_k)P^D(x_k)}{P(A|C)} P(okxk)=P(AC)gk(okxk)PD(xk)
但这个 P ( A ∣ C ) P(A|C) P(AC)是什么情况?是个常数吗?而且这就求出了 P ( o k ∣ x k ) P(o_k|x_k) P(okxk),可这里只有一种情况就求出来了即只有一个表达式,不是开头写的分两种情况啊???

对于理论测量模型的梳理先到这里,还是存在许多疑问,后面再继续思考和学习。需要复习古典概型那些知识。

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值