[论文笔记] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

原文链接:https://arxiv.org/abs/1703.10593 


Contributions 

 pix2pix的image-to-image translation需要图像对,而获得这样的训练数据不仅困难而且昂贵。而目前不需图像对的方法通常是domain-specific的,或者需要假定一些先验,通用性不够,并且效果也不是太好。

本文提出了cycle consistency loss(循环一致性损失),使得通用的 unpaired image-to-image translation成为可能。只需要给定两个domain的 image collection,CycleGAN就能挖掘集合层面的监督信息,实现图像迁移。

文章讨论了CycleGAN的缺陷

  • CycleGAN在颜色和纹理上的变换还是比较成功的,但在比较大的几何变换上还是比较难达到的
  • 和 paired training对比而言,还是具有很大差距的

Methodology (原文图片,侵删)

 Model 包含两个G网络( G=G_{X \rightarrow Y}, F=G_{Y \rightarrow X} )和两个D网络( D_Y, D_X )。生成网络  G=G_{X \rightarrow Y} 的功能是:使图像域 X 的图像经过该网络生成图像域 Y 的图像,而 F=G_{Y \rightarrow X} 则相反。判别网络 D_Y 的功能是:判别网络 G=G_{X \rightarrow Y} 生成的图像域 Y' 和目标图像域 Y 的差异,而 D_X 也类似

 Adversarial Loss

两个映射函数都应用对抗性损失,对应映射函数 G=G_{X \rightarrow Y} ,我们应用如下损失: 

G 试图生成图像 G(x) 看起来与 Y域中的图像相似,而 D_Y 的目的是区分平移样本 G(x) 和真实样本 y 。 G 的目标是最小化这个目标,而 D_Y 则试图最大化这个目标,即  

 类似的对应映射F=G_{Y \rightarrow X}  和鉴别器 D_X,即 

Cycle Consistency Loss

理论上,对抗性训练可以学习映射 G 和 F,它们分别产生与目标域 Y 和 X 相同分布的输出。仅靠对抗损失不能保证所学习的函数能将单个输入 x_i  映射到期望的输出 y_i 。为此,本文提出了Cycle Consistency Loss,如Figure 3 (b)。对于来自 X 域的每一幅图像 x_i ,图像循环转化应该能够将 x_i 带回原始图像:x\rightarrow G(x) \rightarrow F(G(x)) \approx x  ,称之为forward cycle consistency。类似的如Figure 3 (c),对于每个图像  yG 和 F 也应该满足:y\rightarrow F(y) \rightarrow G(F(y)) \approx y  ,用循环一致性损失来激励这种行为:

Full Objective

综合上述loss, 最终的训练loss即是

 训练目标为


Reference 

论文阅读 | CycleGAN - 知乎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值