专题 排列与组合从入门到入土

1 基本计数原理

加法原理 设集合 S S S被划分为两两不相交的部分 S 1 , S 2 , S 3 , . . . , S m S_1,S_2,S_3,...,S_m S1,S2,S3,...,Sm。则S的对象数目可以通过确定他每一部分的对象数目并如此相加得到:
∣ S ∣ = ∣ S 1 ∣ + ∣ S 2 ∣ + . . . + ∣ S m ∣ |S|=|S_1|+|S_2|+...+|S_m| S=S1+S2+...+Sm
乘法原理 令集合 S S S是对象的有序对 ( a , b ) (a,b) (a,b)的集合,其中一个对象 a a a来自大小为 p p p的一个集合,而对于对象 a a a的每个选择,对象 b b b q q q种选择。于是, S S S的大小为:
∣ S ∣ = p × q |S|=p\times q S=p×q
减法原理 A A A是一个集合,而 U U U是包含 A A A的更大集合。设
A ‾ = { x ∈ U : x ∉ A } \overline{A}=\{ x\in U:x\notin A \} A={xU:x/A}
A A A U U U中的补。那么 A A A中的对象数目 ∣ A ∣ |A| A由下列法则给出:
∣ A ∣ = ∣ U ∣ − ∣ A ‾ ∣ |A|=|U|-|\overline{A}| A=UA
除法原理 S S S是一个有限集合,把它划分成 k k k个部分使得每一个部分包含的对象数目相同。于是,此划分中部分的数目由下述公式给出:
k = ∣ S ∣ 在 一 个 部 分 中 的 对 象 数 目 k=\frac{|S|}{在一个部分中的对象数目} k=S

2 集合的排列

r r r为正整数,那么提到一个 n n n元素的集合 S S S r r r排列,我们理解为 n n n个元素中的 r r r个元素的有序放置。如果 S = a , b , c S={a,b,c} S=a,b,c,那么 S S S 3 3 3 1 1 1排列是
a   b   c a \ b \ c a b c
S S S 6 6 6 2 2 2排列是
a b   a c   b a   b c   c a   c b ab\ ac\ ba\ bc\ ca\ cb ab ac ba bc ca cb
S S S 6 6 6 3 3 3排列是
a b c   a c b   b a c   b c a   c a b   c b a abc\ acb\ bac\ bca\ cab\ cba abc acb bac bca cab cba
S S S没有 4 4 4排列,因为 S S S的元素个数少于 4 4 4

我们用 P ( n , r ) P(n,r) P(n,r)表示 n n n元素集合 r r r排列的数目。如果 r > n r>n r>n,则 P ( n , r ) = 0 P(n,r)=0 P(n,r)=0。显然,对于每个正整数 n n n P ( n , 1 ) = n P(n,1)=n P(n,1)=n n n n元素集合 S S S n n n排列将更简单的称为 S S S的全排列或 n n n个元素的全排列。因此,集合 S S S的一个全排列就是以某种顺序出现的 S S S的所有元素的一个列表。上面我们已经看到 P ( 3 , 1 ) = 3 P(3,1)=3 P(3,1)=3 P ( 3 , 2 ) = 6 P(3,2)=6 P(3,2)=6以及 P ( 3 , 3 ) = 6 P(3,3)=6 P(3,3)=6

定理2.1 对于正整数 n n n r r r r ⩽ n r\leqslant n rn,有
P ( n , r ) = n × ( n − 1 ) × . . . × ( n − r + 1 ) = n ! ( n − r ) ! P(n,r)=n\times(n-1)\times...\times(n-r+1)=\frac{n!}{(n-r)!} P(n,r)=n×(n1)×...×(nr+1)=(nr)!n!
定理2.2 你元素集合的循环 r r r排列的数目是
P ( n , r ) r = n ! r × ( n − r ) ! \frac{P(n,r)}{r}=\frac{n!}{r\times(n-r)!} rP(n,r)=r×(nr)!n!
特别的, n n n个元素的循环全排列的数目是 ( n − 1 ) ! (n-1)! (n1)!

3 集合的组合(子集)

设r是非负整数,那么提到n元素集合S的一个r集合,我们把它理解为在S的n个对象中选取人r个对象的一个无序选择。一个r组合的结果是S的一个r子集,既是由S的n个对象中的r个对象组成的子集。

如果S={a,b,c,d},那么
{ a , b , c } , { a , b , d } , { a , c , d } , { b , c , d } \{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\} {a,b,c}{a,b,d}{a,c,d}{b,c,d}

是S的4个3子集。我们用 ( n r ) {n\choose r} (rn)表示n元素集合的r子集的数目。显然
( n r ) = 0   如 果 r > n {n\choose r}=0 \ 如果r>n (rn)=0 r>n
还有
( 0 r ) = 0   如 果 r > 0 {0\choose r}=0 \ 如果r>0 (r0)=0 r>0
很容易看出,对于每一个非负整数n,下述事实成立:
( n 0 ) = 1 , ( n 1 ) = n , ( n n ) = 1 {n\choose 0}=1,{n\choose 1}=n,{n\choose n}=1 (0n)=1(1n)=n(nn)=1
特别的, ( 0 0 ) = 1 {0\choose 0}=1 (00)=1

定理3.1 对于 0 ⩽ r ⩽ n 0\leqslant r\leqslant n 0rn,有
P ( n , r ) = r ! ( n r ) P(n,r)=r!{n\choose r} P(n,r)=r!(rn)
因此
( n r ) = n ! r ! ( n − r ) ! {n\choose r}=\frac{n!}{r!(n-r)!} (rn)=r!(nr)!n!
定理3.2 对于 0 ⩽ r ⩽ n 0\leqslant r\leqslant n 0rn,有
( n r ) = ( n n − r ) {n \choose r}={n \choose n-r} (rn)=(nrn)
定理3.3 (帕斯卡公式) 对于所有满足的整数n和k,有
( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) {n\choose k}={n-1\choose k}+{n-1\choose k-1} (kn)=(kn1)+(k1n1)
定理3.4 对于 n ⩾ 0 n\geqslant0 n0,有
( n 0 ) + ( n 1 ) + ( n 2 ) + . . . + ( n n ) = 2 n {n\choose 0}+{n\choose 1}+{n\choose 2}+...+{n\choose n}=2^n (0n)+(1n)+(2n)+...+(nn)=2n
且这个共同值等于 n n n元素集合的子集数量。

4 多重集合的排列

如果 S S S是一个多重集合,那么 S S S的一个 r r r排列是 S S S r r r个对象的一个有序放置。如果 S S S的对象总数是 n n n(重复对象计数在内),那么 S S S n n n排列也称为 S S S的全排列。例如,如果 S = { 2 ‧ a , 1 ‧ b , 3 ‧ c } S=\{2‧a,1‧b,3‧c\} S={2a,1b,3c},那 a c b d   c b c c acbd\ cbcc acbd cbcc都是 S S S 4 4 4排列,而 a b c c c a abccca abccca是S的一个全排列。多重集合 S S S没有 7 7 7排列,因为 7 > 3 + 1 + 1 = 6 7>3+1+1=6 7>3+1+1=6,即 7 7 7大于集合 S S S的对象个数。

定理4.1 S S S k k k种不同类型对象的多重集合,每一个元素都有无限重复数。那么, S S S r r r排列的数目是 k r k^r kr

定理4.2 S S S是多重集合,它有 k k k种不同类型的对象,且每一种类型的有限重复数分别为 n 1 , n 2 , . . . , n k n_1,n_2,...,n_k n1n2...nk。设 S S S的大小为 n = n 1 + n 2 + . . . + n k n=n_1+n_2+...+n_k n=n1+n2+...+nk。则S的全排列数目等于 n ! n 1 ! n 2 ! . . . n k ! \frac{n!}{n_1!n_2!...n_k!} n1!n2!...nk!n!

定理4.3 n n n是正整数,并设 n 1 , n 2 , . . . , n k n_1,n_2,...,n_k n1n2...nk是正整数且 n = n 1 + n 2 + . . . + n k n=n_1+n_2+...+n_k n=n1+n2+...+nk。把 n n n对象集合划分成 k k k个标有标签的盒子,且第 1 1 1个盒子含有 n 1 n_1 n1个对象,第 2 2 2个盒子含有 n 2 n_2 n2个对象, . . . ... ...,第 k k k个盒子含有 n k n_k nk个对象,这样的划分方法数等于
n ! n 1 ! n 2 ! . . . n k ! \frac{n!}{n_1!n_2!...n_k!} n1!n2!...nk!n!
如果这些盒子没有标签,且 n 1 = n 2 = . . . = n k n_1=n_2=...=n_k n1=n2=...=nk,那么划分数等于 n ! k ! n 1 ! n 2 ! . . . n k ! \frac{n!}{k!n_1!n_2!...n_k!} k!n1!n2!...nk!n!
定理4.4 有k种颜色共 n n n个车,第一种颜色有 n 1 n_1 n1个,第二种颜色有 n 2 n_2 n2个, . . . ... ...,的 k k k种颜色有 n k n_k nk个。把这些车放置在有个 n × n n\times n n×n的棋盘上使得车之间不能相互攻击的方法数等于 n ! n ! n 1 ! n 2 ! . . . n k ! = ( n ! ) 2 n 1 ! n 2 ! . . . n k ! n!\frac{n!}{n_1!n_2!...n_k!}=\frac{(n!)^2}{n_1!n_2!...n_k!} n!n1!n2!...nk!n!=n1!n2!...nk!(n!)2

5 多重集合的组合

如果 S S S是多重集合,那么 S S S r r r组合是 S S S r r r个对象的无序选择。因此, S S S的一个 r r r组合本身也是一个多重集合,它是一个大小为 r r r S S S的多重子集,或者简单的说,是一个多重 r r r子集。如果 S S S n n n个对象,那么 S S S只有一个 n n n组合,即 S S S自己。如果 S S S含有 k k k种不同类型的对象,那么 S S S就有 k k k 1 1 1组合。例如,如果 S = { 2 ‧ a , 1 ‧ b , 3 ‧ c } S=\{2‧a,1‧b,3‧c\} S={2a,1b,3c},那么 { 2 ‧ a , 1 ‧ b } , { 2 ‧ a , 1 ‧ c } , { 1 ‧ a , 1 ‧ b , 1 ‧ c } , { 1 ‧ a , 2 ‧ c } , { 1 ‧ b , 2 ‧ c } , { 3 ‧ c } \{2‧a,1‧b\},\{2‧a,1‧c\},\{1‧a,1‧b,1‧c\},\{1‧a,2‧c\},\{1‧b,2‧c\},\{3‧c\} {2a,1b}{2a,1c}{1a,1b,1c}{1a,2c}{1b,2c}{3c}
S S S 6 6 6 3 3 3组合。

定理5.1 S S S是有 k k k种类型对象的多重集合,某种元素均具有无限的重复数。那么 S S S r r r组合的个数等于 ( r + k − 1 r ) = ( r + k − 1 k − 1 ) {r+k-1\choose r}={r+k-1\choose k-1} (rr+k1)=(k1r+k1)

6 用计数原理计算有限概率

有限概率的背景是这样的:有一个实验 ε \varepsilon ε,在进行这个实验时,它产生的结果是某种有限结果集合中的一个。假设每一个结果都是等可能的(即没有哪一个结果比其他结果更有可能出现);这时我们说这个实验是随机的。所以可能结果的集合被称为这个实验的样本空间,并把它记作 S S S。因此, S S S是一个有限集合,比如说下面 n n n个元素的集合: S = { s 1 , s 2 , . . . s n } S=\{s_1,s_2,...s_n\} S={s1,s2,...sn}当我们进行实验 ε \varepsilon ε时,每一个 s i s_i si都有 n n n分之一的出现机会,所以说 s i s_i si的概率为 1 / n 1/n 1/n,写作 P r o b ( s i ) = 1 / n   ( i = 1 , 2 , . . . , n ) Prob(s_i)=1/n\ (i=1,2,...,n) Prob(si)=1/n (i=1,2,...,n)一个事件就是样本空间 S S S的一个子集 E E E,但我们通常是用描述式语言给出这个子集 E E E,而不是实际列出 E E E的所有结果。

例6.1 n n n为正整数。假设我们在 1 1 1 n n n之间随机选出一个整数序列 i 1 , i 2 , . . . , i n i_1,i_2,...,i_n i1i2...in ( 1 ) (1) 1选出的这个序列是 1 , 2 , . . . , n 1,2,...,n 12...n的排列的概率是多少? ( 2 ) (2) 2这个序列正好含有 n − 1 n-1 n1个不同整数的概率是多少?

样本空间 S S S是长度为 n n n的所有可能序列的集合,其中序列的每一项是整数 1 , 2 , . . . , n 1,2,...,n 12...n中的一个整数。因此 ∣ S ∣ = n n |S|=n^n S=nn,这是因为 n n n项中的每一项都有 n n n种选择。

( 1 ) (1) 1序列是排列的事件 E E E的大小满足 ∣ E ∣ = n ! |E|=n! E=n!。因此, P r o b ( E ) = n ! n n Prob(E)=\frac{n!}{n^n} Prob(E)=nnn!
( 2 ) (2) 2设F是正好有n-1个不同整数的序列的事件。 F F F中的序列只有一个整数是重复的而且整数 1 , 2 , . . . , n 1,2,...,n 12...n正好有一个整数没有出现在这个序列中。这重复的n个选择,没有出现的整数则有 n − 1 n-1 n1个选择。这个重复的整数的位置有 ( n 2 ) {n\choose 2} (2n)种,其余 n − 2 n-2 n2个整数可以用 ( n − 2 ) ! (n-2)! (n2)!种方法放置在剩余的 n − 2 n-2 n2个位置上。因此有 ∣ F ∣ = n ( n − 1 ) ( n 2 ) ( n − 2 ) ! = ( n ! ) 2 2 ! ( n − 2 ) ! |F|=n(n-1){n\choose 2}(n-2)!=\frac{(n!)^2}{2!(n-2)!} F=n(n1)(2n)(n2)!=2!(n2)!(n!)2所以 P r o b ( F ) = ( n ! ) 2 2 ! ( n − 2 ) ! n n Prob(F)=\frac{(n!)^2}{2!(n-2)!n^n} Prob(F)=2!(n2)!nn(n!)2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值