B题 露天矿生产的车辆安排
摘要:
本文通过建立优化模型,分别针对原则一提出的总运输量最小,并且同时出动最少的车辆要求,和原则二提出的要求利用现有车辆运输,获得最大的产量要求,解决了露天矿生产的车辆安排问题与线路问题。
针对原则一,由运输成本最小的要求,运用双目标规划建立了模型,根据分层序列法简化程序,归纳约束条件,得到一个可行的算法。根据实例,带入具体数值,利用Lingo软件,得出以下结果:需要投入14辆卡车;7辆电铲,电铲分布在铲点1,2,3,4,7,8,10;总运量为9.763833万吨公里,再根据实际情况安排这14 辆车的运输路线,具体安排见表4。
针对原则二,在原则一的基础上改变目标变量,其他约束条件不变,建立双目标规划模型,此模型中目标函数具有一定的前后关系,必须考虑在满足第一个目标函数(产量最大)的基础上,再考虑岩石产量的优先权。另外,若产量相等,需要考虑如何使总运输量(吨公里)最小。在模型的基础上,代入实例数据,利用Lingo程序求得结果为:总产量有由10个铲位分别到5个卸点的最大产量为10.09178万吨,其中岩石产量为4.364027万吨,矿石产量为5.727753万吨,车辆具体安排见表6。
其次,对于运输线路,车辆数及最大运输量,我们进行了稳定性分析,现实生活中,装车时间与卸车时间并不是精确的5分钟和3分钟,我们假设他们是服从均值分别为5和3的正态分布的随机变量,并对模型的结果的稳定性进行了合理性验证,结果在域内稳定性较好。
最后,考虑到一个电铲不能同时为两辆卡车服务,所以,一条路线上最多能同时运行的卡车数是有限的,为此我们给出了可执行的周期计算方法。
关键词:双目标规划模型,分层序列法,Lingo软件,正态分布的随机变量,0-1规划,稳定性分析
目录
1.问题的背景与重述
1.1问题背景
如今钢铁工业是国家工业的基础之一,而铁矿是其主要原料基地。一个完整周期的采矿是“爆破-采石-分类-装车-运输-卸车-矿山处理”。
其中装车需用电动铲车(以下简称电铲),运输需用电动轮自卸卡车(以下简称卡车)来完成,由于工业具有较强经济效益性,故应有科学完善的调度方案来使经济效益,资源利用率最大化。
1.2问题重述
在已知矿石供需量及类别,硬件条件属性(铲车,卡车数量,载重,时速,铲位,卸点位置,道路属性,其他因素)的条件下,分别表示出满足原则一(总运量(吨公里)最小,出动最少卡车,成本最小)及原则二(在岩石产量优先的前提下,获最大产量时总运量最小的解)对应的快速算法及排班表。
1.3本文需要解决的问题
本题在已知如下条件下,根据两个原则分别建立模型,求解出最优生产计划。
(1)每个铲位至多能安置一台电铲,电铲的平均装车时间为5分钟.电铲和卸点都不能同时为两辆及两辆以上卡车服务。
(2)尽量把矿石按矿石卸点需要的铁含量29.5%± 1%,搭配起来送到卸点,搭配的量在一个班次(8小时)内满足品位限制即可。
(3)卡车的平均卸车时间为3分钟,载重量154吨,平均时速 28kmh 。卡车的耗油量很大,发动机点火和等待时所耗费的能量也是相当可观的。
(4)要求一个班次中只在开始工作时点火一次,原则上在安排时不应发生卡车等待的情况。
(5)卡车每次都是满载运输。
计划要求满足基本条件,出动几台电铲;分别在哪些铲位上;出动几辆卡车;分别在哪些路线上各运输多少次;在卡车不等待条件下满足产量和质量(品位)要求的基础上。还要满足下面两条原则之一:
1.总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小;
2.利用现有车辆运输,获得最大的产量(岩石产量优先;在产量相同的情况下,取总运量最小的解).
就两条原则分别建立数学模型,并给出一个班次生产计划的快速算法。针对下面的实例,给出具体的生产计划、相应的总运量及岩石和矿石产量。
某露天矿有铲位10个,卸点5个,现有铲车7台,卡车20辆.各个卸点一个班次的产量要求:矿石漏1.2万吨、倒装场I 1.3万吨、倒装场II 1.3万吨、岩石漏1.9万吨、岩场1.3万吨。
2.模型假设
1、假设每辆卡车每次的装载量均为154吨;
2、假设卡车因改变运输线路而产生的时间忽略不计;
3、假设在整个生产和运输过程中,矿石和岩石没有损失;
4、假设卡车在一个班次中只在开始工作时点火一次,且原则上在安排时不发生卡车等待的情况;
5、假设铲位在工作过程中可以移动,但是移动所需时间忽略不计;
6、假设卡车的运输路线可以转移;
7、假设电铲和卡车在一个班次的时间内都正常工作,不需要维修;
8、假设卡车的掉头时间都可以不计;
9、假设卡车空车与满载时的时速都为28km/h
10、假设每辆卡车都是一样的,没有差异
11、假设电铲和卡车在一个班次(8小时)中连续工作,不发生故障等意外状况
12、假设对卸点的矿石品位限制(28.5%-30.5%)由不同铲位运来的不同含铁量的矿石混合而成,岩石不能掺入矿石。
符号 |
含义 |
xij sij nij fi
ai bi
qi d1 d2 c e x g
|
第i个铲位到第j个卸点的材料运输量 第i个铲位到第j个卸点的距离 第i个铲位到第j个卸点的车辆运输次数 代表第i个铲位有无电铲的情况。 fi=1则有一台电铲, fi=0则无电铲 第i个铲位的矿石量 第i个铲位的岩石量 第i个铲位的铁含量 第j个卸点的产量要求量 露天矿拥有矿石的卸点个数 露天矿拥有岩石的卸点个数 露天矿拥有的铲位个数 拥有的卡车数量 投入使用的卡车数量 拥有的电铲数量 |
4.问题分析
本文根据要求,通过建立优化模型,利用Lingo程序,分别针对原则一和原则二解决了露天矿生产的车辆安排问题。
4.1针对原则一
对于原则一,根据露天矿的车辆安排问题,要求总运输量最小,并且同时出动最少的车辆。
1.要求总运量(吨公里)最小,即每个铲位运往每个卸点的矿石或岩石的数量乘以每个铲位到每个卸点的距离,然后再求和,最后在约束条件的约束下求得最小值。
2. 投入车辆最少,我们把卡车来回一次计为一个周期,假设每个卡车都一样,且卡车每次运输的重量均一样,忽略运输过程中的误差。在总运量最小的前提下计算投入车辆即可。
3.最后根据这两个方面的目标要求,再加上基本条件约束,就可以保证总运输成本最小。
4.2针对原则二
针对原则二,原则二的分析过程类似于原则一,他们都是在满足基本露天矿车辆安排的基础上讨论的优化模型,但是在原则二中,每个目标需要考虑的前后关系是不同的,即重要性不同.这是和原则一不同的地方,需要重新考虑。
我们首先要在现有车辆的基础上,考虑如何获得最大的产量;
再在产量最大的基础上,保证岩石产量优先;
最后考虑,如果产量相同,要取总运量最小的解,一步一步求解,后面的目标变量是在满足前面一个目标变量的基础上讨论的。
5.模型的建立与求解
5.1原则一的模型建立与求解
5.1.1模型的准备
1.目标规划(Goal Programming)
目标约束是目标规划特有的,可把约束右端项看作要追求的目标值。目标规划的目标函数(准则函数)是按各目标约束的正、负偏差变量和赋于相应的优先因子而构造的。
当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值。因此目标规划的目标函数只能是
对每一个具体目标规划问题,可根据决策者的要求和赋于各目标的优先因子来构造目标函数。
目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。
2.0-1规划
是一种特殊形式的整数规划 。这种规划的决策变量仅取值0或1,故称为0-1变量或二进制变量 ,因为一个非负整数都可以用二进制记数法用若干个0-1变量表示 。
0-1变量可以数量化地描述诸如开与关、取与弃、有与无等现象所反映的离散变量间的逻辑关系、顺序关系以及互斥的约束条件.
5.1.2模型建立与求解
模型建立
1.确定目标函数
设第i个铲位到第j个卸点的材料运输量为
第i个铲位到第j个卸点的距离为
所以第一个目标变量为第i个铲位到第j个卸点的总运输量(吨公里)为
第二个目标变量为投入车辆数。
xijsij(i=1,2,…c, j=1,2,…,d1+d2)
第二个目标变量为投入车辆数x。
2.确定目标函数表达式
在原则一的要求中
(1)要满足总运量最小:即每个铲位运往每个卸点的岩石或矿石的数量乘以每个铲位到卸点的距离之和最小。
即:
有min最小值;定义总运量为M
所以,第一个目标函数为:
(1)
(2)出动的卡车数量最少:即投入使用的卡车数量最少
所以,第二个目标函数为:
(2)
3.确定约束条件
(1)卸点产量要求
第j个卸点的产量大于等于第i个铲位到第j个卸点的材料运输量:即
(3)
(2)每个铲位的生产能力
各卸点对每个铲位的需求量小于等于这个铲位的生产量:即
矿石漏和倒装场:
(4)
岩石漏和岩场:
(5)
(3)品位限制
从保护国家资源的角度和矿山的经济效益考虑,要把矿石按卸点要求的铁含量搭配起来送到卸点(29.5±1%),则运输到各个卸点的铁含量必须在28.5%-30.5%之间,所以
(6)
(4)电铲能力限制
因为每个铲位只能有一台电铲,且电铲的平均装时间为5分钟,电铲和卸点都不能同时为两辆及以上车辆工作,所以是有工作限制的。
一个小时,一台电铲最多装 辆车,则一个班次最多装
辆车,所以第i个铲位一个班次内的运输量(万吨公里)限制为:
(7)
(5)卸点能力约束
每辆卡车平均卸车时间为3分钟,则一个小时最多卸60÷3=20 辆车,一个班次最多卸8×20=160
辆车。所以第i个卸点运输量(万吨公里)限制为:
(8)
(6)卡车数量约束
,且x为整数 (9)
(7)电铲数量约束
(10)
(8)第i个铲位到第j个卸点的材料运输量:
(11)
故得到双目标优化模型如下:
(12)
(13)
(9)道路约束能力
从i号铲位到j号卸点路线上卡车运行一个周期所需要的时间为:往返路线时间+装车时间+卸车时间
(14)
从i号铲位到j号卸点最多能运行卡车数:
从i号铲位到j号卸点一辆车最多能运行次数:
(15)
总车次:
总吨数:
即:
(14)
模型的求解
在原则一的条件下,引入实例:某露天矿有铲位10个,卸点5个,现有铲车7台,卡车20辆。各卸点一个班次的产量要求:
矿石漏1.2万吨、倒装场Ⅰ1.3万吨、倒装场Ⅱ1.3万吨、岩石漏1.9万吨、岩场1.3万吨。
将实例中的数据带