【信号与系统学习笔记 1】—— 信号的分类与信号的变换

这是《信号与系统》网上授课的第一次笔记,主要记录一下自己对信号分类以及信号变换的一些理解。

P.S:在《信号与系统》这门课中会经常用到 M a t l a b Matlab Matlab 仿真,我会将全部仿真代码放到 g i t h u b github github

【戳这里!】我Blog 中关于《信号与系统》相关代码的 github地址

一、信号的分类

1.1 确定信号和不确定信号

这个概念其实很好理解:如果每一次发出的信号 x x x,它某一时刻的幅值每次都是固定的,那么这个信号就是确定信号。

1.2 离散时间信号和连续时间信号

我们以后的课程约定: x ( t ) x(t) x(t) 代表连续时间信号,用 t t t 代表连续时间,圆括号括起来。注意:连续时间信号的自变量是连续的,幅值也是连续的。
x [ n ] x[n] x[n] 代表离散时间信号,用 n n n 代表离散时间(只能是整数!),方括号括起来。注意:离散时间信号的自变量是离散的,但是幅值是连续的。

1.3 周期信号和非周期信号

总所周知,对于连续时间信号 y = s i n ( t ) y = sin(t) y=sin(t) 显然是一个周期信号。但是离散时间下, y [ n ] = s i n ( n ) y[n] = sin(n) y[n]=sin(n) 还是不是周期信号呢?

答案是:不一定了!
下面通过一个例子说明:我们下面的第一幅图是 t t t 从 [-10, 10] 的连续区间下的 s i n ( t ) sin(t) sin(t),第二幅图是 n n n 在 [-10,10] 的区间下以 1秒为间隔的离散正弦信号:

我们发现,按照这样的时间划分, s i n ( n ) sin(n) sin(n) 已经不再是周期信号了!

1.4 能量信号和功率信号

先来看看连续时间信号在一段时间 t 1 t_1 t1~ t 2 t_2 t2 内的能量: E = ∫ t 1 t 2 ∣ x ( t ) ∣ 2 d t E = \int_{t_1}^{t_2}|x(t)|^2dt E=t1t2x(t)2dt
那么很自然地,在这段时间内信号的平均功率就是: P = 1 t 2 − t 1 E = 1 t 2 − t 1 ∫ t 1 t 2 ∣ x ( t ) ∣ 2 d t P = \frac{1}{t_2-t_1}E = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}|x(t)|^2dt P=t2t11E=t2t11t1t2x(t)2dt

下面我们再看看离散时间信号在一段时间 n 1 n_1 n1 ~ n 2 n_2 n2 的能量: E = ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 E = \sum_{n=n_1}^{n_2}|x[n]|^2 E=n=n1n2x[n]2
对应地在这段时间内的平均功率为: P = 1 n 2 − n 1 + 1 ∑ n = n 1 n 2 ∣ x [ n ] ∣ 2 P = \frac{1}{n_2-n_1+1}\sum_{n=n_1}^{n_2}|x[n]|^2 P=n2n1+11n=n1n2x[n]2
这里要特别注意:离散时间下 n 1 n_1 n1 n 2 n_2 n2 之间的间隔是 n 2 − n 1 + 1 n_2-n_1+1 n2n1+1 !!

然而,这门课研究的,是信号的过去、现在和未来,因此,为了一般化,我们将时间取到无穷:
那么,对于连续时间信号而言,能量就可以表示成: E = lim ⁡ t → ∞ ∫ − T 2 T 2 ∣ x ( t ) ∣ 2 d t E = \lim_{t\to ∞}\int_{-\frac{T}{2}}^{\frac{T}{2}}|x(t)|^2dt E=tlim2T2Tx(t)2dt
而功率就可以表示成: P = lim ⁡ t → ∞ 1 2 T ∫ − T 2 T 2 ∣ x ( t ) ∣ 2 d t P = \lim_{t\to ∞}\frac{1}{2T}\int_{-\frac{T}{2}}^{\frac{T}{2}}|x(t)|^2dt P=tlim2T12T2Tx(t)2dt

对于离散时间信号而言,能量可以表示成: E = lim ⁡ N → ∞ ∑ n = − N N ∣ x [ n ] ∣ 2 E =\lim_{N\to ∞}\sum_{n=-N}^{N}|x[n]|^2 E=Nlimn=NNx[n]2
功率可以表示成: P = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x [ n ] ∣ 2 P = \lim_{N\to ∞}\frac{1}{2N+1}\sum_{n=-N}^{N}|x[n]|^2 P=Nlim2N+11n=NNx[n]2
(同样要小心这里的时间间隔 2 N + 1 2N+1 2N+1

下面整理给出无限时间内,连续时间信号和离散时间信号分别的能量和功率的表达式:

  1. 连续时间信号
    { E = lim ⁡ T → ∞ ∫ − T 2 T 2 ∣ x ( t ) ∣ 2 d t P = lim ⁡ T → ∞ 1 2 T ∫ − T 2 T 2 ∣ x ( t ) ∣ 2 d t \left \{ \begin{array}{c} E = \lim_{T\to ∞}\int_{-\frac{T}{2}}^{\frac{T}{2}}|x(t)|^2dt\\ \\ P = \lim_{T\to ∞}\frac{1}{2T}\int_{-\frac{T}{2}}^{\frac{T}{2}}|x(t)|^2dt \end{array} \right. E=limT2T2Tx(t)2dtP=limT2T12T2Tx(t)2dt

  2. 离散时间信号
    { E = lim ⁡ N → ∞ ∑ n = − N N ∣ x [ n ] ∣ 2 P = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x [ n ] ∣ 2 \left \{ \begin{array}{c} E =\lim_{N\to ∞}\sum_{n=-N}^{N}|x[n]|^2\\ \\ P = \lim_{N\to ∞}\frac{1}{2N+1}\sum_{n=-N}^{N}|x[n]|^2 \end{array} \right. E=limNn=NNx[n]2P=limN2N+11n=NNx[n]2

在我们得到了无限时间内,连续时间信号和离散时间信号分别的能量和功率的表达式之后,我们给出能量信号和功率信号的定义:

能量有限的,(功率为0)就是能量信号
功率有限的,(能量无穷)就是功率信号

我们看啊,假如这个信号是能量信号,也就说明 E E E 是一个有限的数,而在无穷的时间里面积分还能得到有限的数,意味着这个信号总会有一个起点或者是终点,而不能无限延申下去

比如上面这样的周期信号,就不可能是能量信号了,因为它在 t = ∞ t=∞ t= 的时候依然会有有幅值的地方,所以它的 E应该是无穷大。

也即是说:

  1. 周期信号一定是功率信号
  2. 能量信号一定不是周期信号

结合上面的讨论,我们从能量信号和功率信号的角度把周期信号和非周期信号分分类:
【1】首先对于周期信号,那必然是功率信号(因为在可以无限延拓下去,所以能量无穷,但是因为周期信号的幅度一定是有限的,所以它功率是一定的)

【2】对于非周期信号,我们可以分为3类:

  1. 第一类:持续时间无限,幅度固定的非周期信号(功率信号)
  1. 只在一段有限时间内有幅度的信号,或者说持续时间有限(属于能量信号)
  1. 随着时间的增长,幅度也一直增长: t → ∞ , x ( t ) → ∞ t\to ∞, x(t) \to ∞ t,x(t) (非功非能信号)

二、信号的变换

2.1 信号的时移

这个好理解: x ( t ) → x ( t − t 0 ) x(t)\to x(t-t_0) x(t)x(tt0),如果 t 0 t_0 t0大于0,说明把信号向右平移。如果 t 0 t_0 t0 小于0,说明信号向左平移。下面用matlab 画一画:

2.2 信号的反转变换

x ( t ) x(t) x(t) 如果将他变成 x ( − t ) x(-t) x(t),就是相当于把 x ( t ) x(t) x(t) 沿着纵轴镜像对称翻折得到。

2.3 信号的尺度变换

如果对连续时间信号 x ( t ) x(t) x(t) 做尺度变换 x ( a t ) x(at) x(at),有下面两种情况:

  1. 如果 a > 1 a > 1 a>1 相当于把信号压缩a倍(信号变瘦,高矮不变)
  2. 如果 0 < a < 1 0<a<1 0<a<1,相当于把信号扩展 1 a \frac{1}{a} a1(信号变胖,高矮不变)

尺度变换建议的顺序:先平移 → \to 再缩放,最后反转。关于缩放的技巧,我们可以先得到平移之后自变量的取值范围: [ i , j ] [i,j] [i,j],接着看缩放系数 a a a,如果 a > 1 a>1 a>1,那么自变量范围除以 a a a 0 < a < 1 0<a<1 0<a<1,那么就将范围增加 1 a \frac{1}{a} a1 倍。函数值的话自己看着现在自变量对应的原来函数的值写。

注意:自变量的基本变换都是针对 t t t 来的, x ( − t + 3 ) x(-t+3) x(t+3) 其实是将 x ( − t ) x(-t) x(t) 向右移动3个单位!


【复习内容】:下面给出信号变换的妙招(防出错):
一般对于信号的变换建议按照下面的顺序:先平移,然后再针对自变量 t t t 或者 n n n 做尺度变换

例如:为了获得 x ( 3 2 t + 1 ) x(\frac{3}{2}t+1) x(23t+1),我们先将 x ( t ) x(t) x(t) 向左平移1个单位,得到 x ( t + 1 ) x(t+1) x(t+1),然后再针对自变量 t t t 做尺度变换,得到 x ( 3 2 t + 1 ) x(\frac{3}{2}t+1) x(23t+1)

强调:尺度变换都是针对连续时间信号而言的,对于离散时间信号的“缩放”,其实只是抽取了其中的某个部分。另外,连续时间信号的尺度变换是可逆的,但是离散时间信号,你抽取了一部分,就不可能再换原回来了。

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
连续系统的时域分析是信号系统学习中的重要部分。时域分析研究的是信号在时间域内的变化规律,常用的分析方法包括冲激响应法、单位阶跃响应法和相应方程法。 1. 冲激响应法 冲激响应法是一种基于系统输入信号的冲激函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个冲激序列的加权和,然后计算出系统对每个冲激的响应,得到系统的冲激响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为冲激序列的加权和,从而得到系统对任何输入信号的响应。 2. 单位阶跃响应法 单位阶跃响应法是一种基于系统输入信号的单位阶跃函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个单位阶跃函数的加权和,然后计算出系统对每个单位阶跃函数的响应,得到系统的单位阶跃响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为单位阶跃函数的加权和,从而得到系统对任何输入信号的响应。 3. 相应方程法 相应方程法是一种基于系统微分方程的解析解来分析系统时域特性的方法。具体来说,根据系统微分方程的特性,可以得到系统的传递函数,然后通过拉普拉斯变换将输入信号和传递函数变换到频域内,最终通过反变换得到系统的时域响应。 以上三种方法都是分析连续系统时域特性的重要方法,各自适用于不同的情况。掌握这些方法可以帮助我们更好地理解和分析连续系统的时域特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值