【信号与系统学习笔记】——奇异函数家族及其性质

我们在之前的学习中知道,单位冲激函数是一类奇异函数。我们来回顾一下单位冲激函数的操作性定义: x ( t ) = x ( t ) ∗ δ ( t ) x(t) = x(t) * δ(t) x(t)=x(t)δ(t)
也就是说,任何一个信号与单位冲激函数做卷积的结果还是这个信号本身。


那么我们下面再引入其他的一些奇异函数。

u 1 ( t ) u_1(t) u1(t):我们对他的操作性定义是: d x ( t ) d t = x ( t ) ∗ u 1 ( t ) \frac{dx(t)}{dt} = x(t) * u_1(t) dtdx(t)=x(t)u1(t)
也就是说,任何一个可导的信号与这个奇异函数 u 1 ( t ) u_1(t) u1(t) 卷积的结果,就相当于对这个信号求一阶导。

进一步,我们还可以有 u 2 ( t ) u_2(t) u2(t)
我们通过 u 1 ( t ) u_1(t) u1(t) 的操作性定义可以延申:如果对信号做二阶导呢? d 2 x ( t ) d t 2 = x ( t ) ∗ u 1 ( t ) ∗ u 1 ( t ) \frac{d^2x(t)}{dt^2} = x(t) * u_1(t) * u_1(t) dt2d2x(t)=x(t)u1(t)u1(t)
那么,我们就可以定义: u 2 ( t ) = u 1 ( t ) ∗ u 1 ( t ) u_2(t) = u_1(t) * u_1(t) u2(t)=u1(t)u1(t),即 u 2 ( t ) u_2(t) u2(t)的操作性定义为: d 2 x ( t ) d t 2 = x ( t ) ∗ u 2 ( t ) \frac{d^2x(t)}{dt^2} = x(t) * u_2(t) dt2d2x(t)=x(t)u2(t)
也就是说,任何一个可导的信号与这个奇异函数 u 2 ( t ) u_2(t) u2(t) 卷积的结果,就相当于对这个信号求二阶导。

以此类推, u 3 ( t ) , u 4 ( t ) , ⋯ u_3(t), u_4(t), \cdots u3(t),u4(t),的定义也是这个道理。那么我们就得到了一部分奇异函数家族。

下面我们来看一个例子:求下面的积分:

∫ − 5 + 5 u 1 ( 1 − τ ) c o s ( 2 π τ ) d τ \int_{-5}^{+5}u_1(1-τ)cos(2πτ)dτ 5+5u1(1τ)cos(2πτ)dτ

那么这个题目,我们可以看作是信号 c o s ( 2 π t ) cos(2πt) cos(2πt) 与信号 u 1 ( t ) u_1(t) u1(t) 的卷积。而 u 1 ( 1 − t ) c o s ( 2 π t ) u_1(1-t)cos(2πt) u1(1t)cos(2πt)这样一个表达式就是在 卷积结果在 t = 1 t = 1 t=1 时的值。而根据我们刚刚说的 u 1 ( t ) u_1(t) u1(t) 的操作性定义:任何一个可导的信号与这个奇异函数 u 1 ( t ) u_1(t) u1(t) 卷积的结果,就相当于对这个信号求一阶导

所以, ∫ − 5 + 5 u 1 ( 1 − t ) c o s ( 2 π t ) d t = − 2 π s i n ( 2 π ) = 0 \int_{-5}^{+5}u_1(1-t)cos(2πt)dt = -2πsin(2π) = 0 5+5u1(1t)cos(2πt)dt=2πsin(2π)=0


我们在刚刚已经了解了 u 1 ( t ) , u 2 ( t ) , u 3 ( t ) , ⋯ u_1(t) , u_2(t), u_3(t), \cdots u1(t),u2(t),u3(t), 等,我们发现:下标都是正数。那么下标还有没有负数的情况呢??—— 答案是“有!”

如果说下标都是正数的情况可以视为是微分器;那么下标为负数的就可以视为积分器了。我们先来看看 u ( t ) u(t) u(t) 的操作性定义: x ( t ) ∗ u ( t ) = ∫ − ∞ t x ( τ ) d τ x(t) * u(t) = \int_{-∞}^{t}x(τ)dτ x(t)u(t)=tx(τ)dτ
我们也把 u ( t ) u(t) u(t) 称之为: u − 1 ( t ) u_{-1}(t) u1(t)

那么类似地: x ( t ) ∗ u ( t ) ∗ u ( t ) = ∫ − ∞ t u ( τ ) d τ x(t) * u(t)*u(t) = \int_{-∞}^{t}u(τ)dτ x(t)u(t)u(t)=tu(τ)dτ
我们令 u − 2 ( t ) = u − 1 ( t ) ∗ u − 1 ( t ) u_{-2}(t) = u_{-1}(t) * u_{-1}(t) u2(t)=u1(t)u1(t),那么就可以得到 u − 2 ( t ) u_{-2}(t) u2(t)的操作型定义了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值