我们在之前的学习中知道,单位冲激函数是一类奇异函数。我们来回顾一下单位冲激函数的操作性定义:
x
(
t
)
=
x
(
t
)
∗
δ
(
t
)
x(t) = x(t) * δ(t)
x(t)=x(t)∗δ(t)
也就是说,任何一个信号与单位冲激函数做卷积的结果还是这个信号本身。
那么我们下面再引入其他的一些奇异函数。
u
1
(
t
)
u_1(t)
u1(t):我们对他的操作性定义是:
d
x
(
t
)
d
t
=
x
(
t
)
∗
u
1
(
t
)
\frac{dx(t)}{dt} = x(t) * u_1(t)
dtdx(t)=x(t)∗u1(t)
也就是说,任何一个可导的信号与这个奇异函数
u
1
(
t
)
u_1(t)
u1(t) 卷积的结果,就相当于对这个信号求一阶导。
进一步,我们还可以有
u
2
(
t
)
u_2(t)
u2(t):
我们通过
u
1
(
t
)
u_1(t)
u1(t) 的操作性定义可以延申:如果对信号做二阶导呢?
d
2
x
(
t
)
d
t
2
=
x
(
t
)
∗
u
1
(
t
)
∗
u
1
(
t
)
\frac{d^2x(t)}{dt^2} = x(t) * u_1(t) * u_1(t)
dt2d2x(t)=x(t)∗u1(t)∗u1(t)
那么,我们就可以定义:
u
2
(
t
)
=
u
1
(
t
)
∗
u
1
(
t
)
u_2(t) = u_1(t) * u_1(t)
u2(t)=u1(t)∗u1(t),即
u
2
(
t
)
u_2(t)
u2(t)的操作性定义为:
d
2
x
(
t
)
d
t
2
=
x
(
t
)
∗
u
2
(
t
)
\frac{d^2x(t)}{dt^2} = x(t) * u_2(t)
dt2d2x(t)=x(t)∗u2(t)
也就是说,任何一个可导的信号与这个奇异函数
u
2
(
t
)
u_2(t)
u2(t) 卷积的结果,就相当于对这个信号求二阶导。
以此类推, u 3 ( t ) , u 4 ( t ) , ⋯ u_3(t), u_4(t), \cdots u3(t),u4(t),⋯的定义也是这个道理。那么我们就得到了一部分奇异函数家族。
下面我们来看一个例子:求下面的积分:
∫ − 5 + 5 u 1 ( 1 − τ ) c o s ( 2 π τ ) d τ \int_{-5}^{+5}u_1(1-τ)cos(2πτ)dτ ∫−5+5u1(1−τ)cos(2πτ)dτ
那么这个题目,我们可以看作是信号 c o s ( 2 π t ) cos(2πt) cos(2πt) 与信号 u 1 ( t ) u_1(t) u1(t) 的卷积。而 u 1 ( 1 − t ) c o s ( 2 π t ) u_1(1-t)cos(2πt) u1(1−t)cos(2πt)这样一个表达式就是在 卷积结果在 t = 1 t = 1 t=1 时的值。而根据我们刚刚说的 u 1 ( t ) u_1(t) u1(t) 的操作性定义:任何一个可导的信号与这个奇异函数 u 1 ( t ) u_1(t) u1(t) 卷积的结果,就相当于对这个信号求一阶导
所以, ∫ − 5 + 5 u 1 ( 1 − t ) c o s ( 2 π t ) d t = − 2 π s i n ( 2 π ) = 0 \int_{-5}^{+5}u_1(1-t)cos(2πt)dt = -2πsin(2π) = 0 ∫−5+5u1(1−t)cos(2πt)dt=−2πsin(2π)=0
我们在刚刚已经了解了 u 1 ( t ) , u 2 ( t ) , u 3 ( t ) , ⋯ u_1(t) , u_2(t), u_3(t), \cdots u1(t),u2(t),u3(t),⋯ 等,我们发现:下标都是正数。那么下标还有没有负数的情况呢??—— 答案是“有!”
如果说下标都是正数的情况可以视为是微分器;那么下标为负数的就可以视为积分器了。我们先来看看
u
(
t
)
u(t)
u(t) 的操作性定义:
x
(
t
)
∗
u
(
t
)
=
∫
−
∞
t
x
(
τ
)
d
τ
x(t) * u(t) = \int_{-∞}^{t}x(τ)dτ
x(t)∗u(t)=∫−∞tx(τ)dτ
我们也把
u
(
t
)
u(t)
u(t) 称之为:
u
−
1
(
t
)
u_{-1}(t)
u−1(t)
那么类似地:
x
(
t
)
∗
u
(
t
)
∗
u
(
t
)
=
∫
−
∞
t
u
(
τ
)
d
τ
x(t) * u(t)*u(t) = \int_{-∞}^{t}u(τ)dτ
x(t)∗u(t)∗u(t)=∫−∞tu(τ)dτ
我们令
u
−
2
(
t
)
=
u
−
1
(
t
)
∗
u
−
1
(
t
)
u_{-2}(t) = u_{-1}(t) * u_{-1}(t)
u−2(t)=u−1(t)∗u−1(t),那么就可以得到
u
−
2
(
t
)
u_{-2}(t)
u−2(t)的操作型定义了