在上一个连载我们知道了理想介质均匀平面波的解的形式(这里稍微跟大家简单预告一下,在导电媒质中均匀平面波的解的形式总体样子是一样的,只不过是传播系数等参数由实数变成了复数)
我们先回顾一下理想介质时谐变均匀平面波的解:
因为此时的波阻抗是一个实数,所以也不会使得磁场的相位发生什么改变。即:电场和磁场的相位是一样的。
下面,在本次连载的第一部分,先介绍一下电磁波的各种参数:
-
波阻抗,这个大家在上一个连载已经熟悉了,我们这里直接给出公式:
值得注意的是,在我们现在所讨论的理想介质里面,波阻抗η是一个常数,而在真空中,我们要记得: η 0 = 120 π η_0 = 120π η0=120π -
周期T:这个大家都非常熟悉了
-
等相面:相位相等的平面,等相位面还可以这样描述:
-
相速 v p v_p vp (相位速度,波速):等相位面在空间中移动的速度。相速还可以这样计算: v p = 1 μ ε = 1 μ 0 ε 0 1 μ r ε r = ω β v_p = \frac{1}{\sqrt{με}} = \frac{1}{\sqrt{μ_0ε_0}} \frac{1}{\sqrt{μ_rε_r}}=\frac{ω}{β} vp=με1=μ0ε01μrεr1=βω
-
波长λ: 一个周期T内波传播的距离,有如下计算公式: λ = v p T = v p f = 2 π β λ = v_pT = \frac{v_p}{f} = \frac{2π}{β} λ=vpT=fvp=β2π
-
波数k:空间距离2π内所包含的波长数目,也有如下的计算公式: k = β = 2 π λ k = β = \frac{2π}{λ} k=β=λ2π
说完了电磁波的传播参数,下面我们就来介绍一下理想介质中均匀平面波的传播特点:
【1】电场 、磁场 与传播方向之间相互垂直。 且电场、磁场与传播方向构成右手螺旋关系。如果我们假设
a
n
ˉ
\bar{a_n}
anˉ 是电磁波的传播方向,那么有:
【2】电场和磁场的振幅不变、即理想介质无衰减
【3】由于波阻抗为实数,所以电场和磁场等相位(这是我们在本次连载开篇所提到的)
【4】电磁波的传播速度等于相速
【5】电磁波的相速与频率无关,无色散。 (这里简单介绍一下什么是 “色散”:当携带信号的电磁波在导电媒质中传播时,各个频率分量的电磁波以不同相速传播,经过一段距离之后,他们互相之间的相位关系发生变化,从而导致信号失真,这就是色散)
【6】电场能量密度等于磁场能量密度
好啦!这就是本次连载的全部内容啦!那么我们现在了解了在理想介质中均匀平面波的传播特性和参数计算,关于导电媒质,博主就不准备打算再开连载讲解了,因为其实类比过来也是很简单的,只是一些参数发生了变化罢了。在下一个连载里面,我们讲打算详细分析一种很重要的现象——极化。