遗传规划算法——符号回归案例

该博客探讨了遗传规划算法在解决符号回归问题上的实践。通过建立随机函数并进行训练,最终得出回归结果,展示了算法在数据挖掘中的效用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接上库

from gplearn.genetic import SymbolicRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.utils.random import check_random_state
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import graphviz

整一个随机函数做回归运算

# Ground truth
x0 = np.arange(-1, 1, .1)
x1 = np.arange(-1, 1, .1)
x0, x1 = np.meshgrid(x0, x1)
y_truth = x0**2 - x1**2 + x1 - 1

ax = plt.figure().gca(projection='3d')
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_xticks(np.arange(-1, 1.01, .5))
ax.set_yticks(np.arange(-1, 1.01, .5))
surf = ax.plot_surface(x0, x1, y_truth, rstride=1, cstride=1, color='green', alpha=0.5)
plt.show()

开始训练

rng = check_random_state(0)

# Training samples
X_train = rng
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值