【Vehicle Platooning文献阅读01】Markov Analysis of C-V2X Resource Reservation for Vehicle Platooning

文章:Markov Analysis of C-V2X Resource Reservation for Vehicle Platooning

作者:Xin Gu, Jun Peng, Lin Cai, Xiaoyong Zhang, Zhiwu Huang

这里主要针对其Vehicle Platooning中V2X资源预留的马尔可夫分析进行建模。

目录

1. 建模分析

1.1 马尔科夫链概览

1.2 Collision State Transition

1.2 Transmission State Transition

1.3 可靠性分析

2. 理论分析

2.1 仿真环境

2.2 未完待续(复现)


1. 建模分析

1.1 马尔科夫链概览

C_1,C_2,...,C_q表示的是冲突状态;T_1,T_2,...,T_q表示的是传输状态。上图中的相关曲线则是表示状态之间的转换。接下来逐个分析这些状态转移的理论部分。

1.2 Collision State Transition

对于SPS的相关参数重选计数器RC的范围,这里我们设置它的下限为p,上限为q,即RC的范围为[p,q]。

在一个半持续调度周期内,连续冲突会在至多p次结束(为什么?)

  • 1 < k < p

C_k到C_{k+1}的转移概率为1,因为在RC还没等于0之前会发生持续的资源预留冲突。

  • p \leq k < q

C_k的状态转移状态有四种:

  1. g_k: C_k \rightarrow C_{k+1}:表示车辆v_i, v_t继续使用同一个冲突资源;

  2. z_k: C_k \rightarrow C_1: 当状态C_k处车辆v_i的RC值减小到0并且无论是否选择新资源依然继续使用冲突资源时,就会转移到此;

  3. u_k: C_k \rightarrow T_1: 当进行初始化RC并进行重选选择到非冲突资源;

  4. s_k: C_k \rightarrow T_{k+1}: 车辆v_i继续使用之前的资源而v_t选择一个新的资源。

a. g_k = \frac{(q-k)^2}{(q-k+1)^2}+\frac{p_0(q-k)}{(q-k+1)^2}

加号左边表示的是 两辆车的RC值均大于0的概率,具体解释为当经过第k次传输后,此时的RC的上限为q-k,那么每辆车的RC的计数器的值选项有q-k+1,因为包括了触发重选时的RC=0,所以每个UE在第k次传输后不为0的概率为\frac{q-k}{q-k+1};加号右边表示的是v_t在重选过程中依旧选择之前的资源进行接下来的传输,v_t进行重选并且维持之前的选择概率为\frac{p_0}{q-k+1}

b. z_k = w_k+r_kp_c

其中w_k表示的是v_i的RC值减为0并且v_i继续使用原来的资源并且v_t也是一样的

w_k = \frac{p_0^2}{(q-k+1)^2}+\frac{p_0(q-k)}{(q-k+1)^2}

另外一项表示的v_i选择了新资源并且又面临着资源预留冲突

r_kp_c,其中r_k表示r_k = \frac{1-p_0}{q-k+1}, p_c表示资源预留冲突时的概率。

c. u_k = \frac{p_0(1-p_0)}{(q-k+1)^2} + r_k(1-p_c)

加号左边表示的是,v_i继续使用之前的资源并且v_t选择了一个新资源,加号右边表示v_i选择了一个无冲突的新资源

d. s_k = \frac{(1-p_0)(q-k)}{(q-k+1)^2}

这个表示的是当p \leq k < q时,v_t的RC减到0的概率并且选择新资源,此外此时v_i的RC值大于0的情况。

注:这里检验一下这四种情况的四种状态转移概率是否和为1:

g_k + z_k + u_k +s_k = \frac{(q-k)^2}{(q-k+1)^2}+\frac{p_0(q-k)}{(q-k+1)^2} + \frac{p_0^2}{(q-k+1)^2}+\frac{p_0(q-k)}{(q-k+1)^2} + r_kp_c + \frac{p_0(1-p_0)}{(q-k+1)^2} + r_k(1-p_c) + \frac{(1-p_0)(q-k)}{(q-k+1)^2}=\frac{(q-k)^2+p_0(q-k)+p_0^2+p_0(q-k)+(1-p_0)(q-k+1)p_c+p_0(1-p_0)+(1-p_0)(1-p_c)(q-k+1)+(1-p_0)(q-k)}{(q-k+1)^2}= \frac{q^2+k^2-2qk+2q-2k+1}{(q-k+1)^2}\\

= \frac{(q-k+1)^2}{(q-k+1)^2}\\

= 1

1.2 Transmission State Transition

  • 1 \leq k < p

T_k \rightarrow T_{k+1}的转移概率为1因为成功的资源预留;

  • p \leq k < q

T_k的转移状态有三种

1. h_k: T_k \rightarrow T_{k+1}: 表示下一次预留依旧成功,此时只要v_i的RC计数器不要到达0就可以:

h_k = \frac{q-k}{q-k+1}

 2.  o_k : T_k \rightarrow T_1: 表示v_i的RC值变为0并保持原来使用并不冲突的资源,和v_i选择新的资源且并没有冲突:

o_k = \frac{p_0}{q-k+1} + \frac{(1-p_0)(1-p_c)}{q-k+1}

3. r_kp_c : T_k \rightarrow C_1 : 表示v_i在RC为0的情况下发生冲突的概率

r_kp_c = \frac{(1-p_0)p_c}{q-k+1}

注:这里检验一下这四种情况的三种状态转移概率是否和为1:

h_k+o_k+r_kp_c = \frac{q-k}{q-k+1}+\frac{p_0}{q-k+1} + \frac{(1-p_0)(1-p_c)}{q-k+1}+\frac{(1-p_0)p_c}{q-k+1}\\

= \frac{q-k+p_0+1-p_0-p_c+p_0p_c+p_c-p_0p_c}{q-k+1}\\

= \frac{q-k+1}{q-k+1}\\

= 1

1.3 可靠性分析

\forall \ 1 \leq i,j \leq 2q,它的状态转移概率可以总结为:

设置 \pmb{P} = (p_{i,j}) 表示的是上述的转移矩阵,而\pmb{S} = [s_1,s_2,...,s_{2q}]^T表示的状态的分布情况, 其中s_1,s_2,...,s_q表示的是错误状态的概率分布,而s_{q+1},s_{q+2},...,s_{2q}表示的是传输状态的概率分布。

因为马尔科夫链是不可约的和非周期性的,因此可以通过推导对应于P的特征值1的特征向量来获得S。

设置U为排通信的成功概率,它可以将传输状态的所有概率相加而得:

U = \sum^{2q}_{i=q+1}s_i

2. 理论分析

2.1 仿真环境

2.2 未完待续(复现)

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值