目录
种子区域生长算法
弊端
我们都知道种子区域生长算法是基于图像像素的运算操作,可简单分为4联通和8联通。但种子区域生长算法处理较大任务量时,处理效率大幅度降低。
现状
现在大部分人选择将大幅图像分区,进行种子区域生长算法处理,之后再将分区的结果拼接。这样的虽然会增加种子区域生长算法的处理速度,但是由于图像分区运行,每个分区不存在衔接,拼接后的结果会存在明显的条带现象或者衔接不自然现象。
改进
先假设有一副灰度图像g=[0,255];种子区域生长的基本原理是将灰度值作为阈值判断条件,重点来了:我们可以将二维图像三维化,这里的三维化是一种我们自己的想象,并非程序处理。将灰度图像的x方向和y方向作为xy轴,将每个像素的灰度值作为高z轴,那这个灰度图像就变成了一个三维的类似柱状图的东西。
那么这个三维图沿着x或者y轴投影就可以类似得到下面的图:(再强调一遍:高度就是灰度值)
好了,我们开始重新从这个视角来看种子区域生长算法的处理流程,假设种子点阈值seed_th设定为90(th=90),即灰度值g>90的像素点