结构VAR模型和图表示

1.结构向量自回归VAR ( p ) (p) (p)模型

设平稳过程 { Y t , t ∈ Z } \left \{ Y_{t},t\in Z \right \} {Yt,tZ}均值为0,对任意t,有 Y t = A 1 Y t − 1 + A 2 Y t − 2 + . . . + A p Y t − p + U t Y_{t}=A_{1}Y_{t-1}+A_{2}Y_{t-2}+...+A_{p}Y_{t-p}+U_{t} Yt=A1Yt1+A2Yt2+...+ApYtp+Ut
其中, Y t = ( Y 1 , t , Y 2 , t , . . . , Y K , t ) , A 1 , A 2 , . . . , A p Y_{t}=(Y_{1,t},Y_{2,t},...,Y_{K,t}),\mathcal{A}_{1},\mathcal{A}_{2},...,\mathcal{A}_{p} Yt=(Y1,t,Y2,t,...,YK,t),A1,A2,...,Ap k × k k\times k k×k矩阵。 U t {U_{t}} Ut为序列无关的随机向量序列,其数学期望 E [ U t ] = 0 E\left [ U_{t} \right ] =0 E[Ut]=0,协方差矩阵 Σ = E [ U t U t ′ ] \Sigma =E\left [ U_{t} U_{t} ^{'} \right ] Σ=E[UtUt],一般设 U t U_{t} Ut是多元正态随机向量。称 { Y t , t ∈ Z } \left \{ Y_{t},t\in Z \right \} {Yt,tZ}是均值为0 的p阶VAR模型。其中 Y t = ( Y 1 , t , Y 2 , t , . . . , Y K , t ) Y_{t}=(Y_{1,t},Y_{2,t},...,Y_{K,t}) Yt=(Y1,t,Y2,t,...,YK,t)为当前变量或同期变量,称 Y t − u = ( Y 1 , t − u , Y 2 , t − u , . . . , Y K , t − u ) , ( u = 1 , 2 , . . . , p ) Y_{t-u}=(Y_{1,t-u},Y_{2,t-u},...,Y_{K,t-u}),(u=1,2,...,p) Ytu=(Y1,tu,Y2,tu,...,YK,tu),(u=1,2,...,p)为滞后变量。

2.结构VAR ( p ) (p) (p)模型

上述式子两边左乘 ϕ 0 \mathbb{\phi _{0}} ϕ0 ϕ 0 \mathbb{\phi _{0}} ϕ0使 D = ϕ 0 Σ ϕ 0 ′ \mathbf{D=\phi _{0}\Sigma \phi_{0}^{'} } D=ϕ0Σϕ0成为对角矩阵。 ϕ 0 Y t = ϕ 1 ∗ Y t − 1 + ϕ 2 ∗ Y t − 2 + . . . + ϕ p ∗ Y t − p + a t \phi _{0}Y_{t}=\phi _{1}^{*}Y_{t-1}+\phi _{2}^{*}Y_{t-2}+...+\phi _{p}^{*}Y_{t-p}+a_{t} ϕ0Yt=ϕ1Yt1+ϕ2Yt2+...+ϕpYtp+at式中, ϕ i ∗ = ϕ 0 A i , ϕ 0 U t = a t , E [ a t a t ′ ] = D \phi _{i}^{*}=\phi _{0}A_{i},\phi _{0}U_{t}=a_{t},E\left [ a_{t}a_{t}^{'}\right] =\mathbf{D} ϕi=ϕ0Ai,ϕ0Ut=at,E[atat]=D.
该模型更常用的一种表示形式为: Y t = ( I − ϕ 0 ) Y t + ϕ 1 ∗ Y t − 1 + . . . + ϕ p ∗ Y t − p + a t Y_{t}=(I-\phi _{0})Y_{t}+\phi _{1}^{*}Y_{t-1}+...+\phi _{p}^{*}Y_{t-p}+a_{t} Yt=(Iϕ0)Yt+ϕ1Yt1+...+ϕpYtp+at,其中, I I I k × k k\times k k×k单位矩阵。

3.结构VAR ( p ) (p) (p)模型的条件独立图

设平稳过程 { Y t , t ∈ Z } \left \{ Y_{t},t\in Z \right \} {Yt,tZ}为结构VAR ( p ) (p) (p)模型,图 G = ( V , E ) G=(V,E) G=(V,E)的顶点集 V V V Y t , Y t − 1 , . . . , Y t − p Y_{t}, Y_{t-1},...,Y_{t-p} Yt,Yt1,...,Ytp的分量组成。两个顶点 Y i , t − u Y_{i,t-u} Yi,tu Y j , t − v Y_{j,t-v} Yj,tv之间没有边相连当且仅当在给定除 Y i , t − u Y_{i,t-u} Yi,tu Y j , t − v Y_{j,t-v} Yj,tv外的所有其他变量的条件下 Y i , t − u Y_{i,t-u} Yi,tu Y j , t − v Y_{j,t-v} Yj,tv是条件独立的。假设结构VAR ( p ) (p) (p)模型中 a t a_{t} at是多元正态随机向量,则条件独立表示条件偏自相关系数为0,即 ρ ( Y i , t − u , Y j , t − v ∣ Y k , t − ω ) = − W h l / W h h W l l = 0 \rho(Y_{i,t-u},Y_{j,t-v}|{Y_{k,t-\omega}})=-W_{hl}/\sqrt{W_{hh}W_{ll}}=0 ρ(Yi,tu,Yj,tvYk,tω)=Whl/WhhWll =0
Y k , t − ω {Y_{k,t-\omega}} Yk,tω表示除 Y i , t − u Y_{i,t-u} Yi,tu Y j , t − v Y_{j,t-v} Yj,tv外所有到滞后阶数 p p p的变量集合; h h h l l l分别表示变量 Y i , t − u Y_{i,t-u} Yi,tu Y j , t − v Y_{j,t-v} Yj,tv在矩阵 W W W Σ Y \Sigma _{Y} ΣY中的标号,且 W = Σ Y − 1 W=\Sigma _{Y}^{-1} W=ΣY1 Σ Y \Sigma _{Y} ΣY为图G中所有变量合集的协方差矩阵。则图G为结构VAR ( p ) (p) (p)模型的条件独立图。

4.结构VAR ( p ) (p) (p)模型的有向非循环图

设平稳过程 { Y t , t ∈ Z } \left \{ Y_{t},t\in Z \right \} {Yt,tZ}为结构VAR ( p ) (p) (p)模型,图 G = ( V , E ) G=(V,E) G=(V,E)的顶点集 V V V Y t , Y t − 1 , . . . , Y t − p Y_{t}, Y_{t-1},...,Y_{t-p} Yt,Yt1,...,Ytp的分量组成。存在从 Y i , t − u Y_{i,t-u} Yi,tu Y j , t − v Y_{j,t-v} Yj,tv的有向边当且仅当下面两个条件之一成立:
(1) 0 < u − v ≤ p 0< u-v\le p 0<uvp,矩阵 ϕ u − v ∗ \phi _{u-v}^{*} ϕuv的第j行第i列元素不为0;
(2) u = v , i ≠ j u=v,i\ne j u=v,i=j,矩阵 ( I − ϕ 0 ) (I-\phi _{0}) (Iϕ0)的第j行第i列元素不为0。
则称图G为结构VAR ( p ) (p) (p)模型的有向非循环图。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值