论文笔记-时序分类-OS-CNN

在这里插入图片描述

论文标题:
OMNI-SCALE CNNS: A SIMPLE AND EFFECTIVE KERNEL SIZE CONFIGURATION FOR TIME SERIES CLASSIFICATION
论文链接:
https://openreview.net/forum?id=PDYs7Z2XFGv
代码链接:
https://github.com/Wensi-Tang/OS-CNN

摘要

感受野(RF)大小一直是影响一维卷积神经网络(1D-CNN)时间序列分类任务的重要因素之一。为了选择合适的大小,人们付出了很大的努力,因为它对性能有很大的影响,并且对于每个数据集都有很大的不同。本文提出了一种适用于1D-CNN 的全尺寸块(OS-block) ,其中核的大小由一个简单而通用的规则决定。特别地,它是一组内核大小,可以有效覆盖不同数据集的最佳感受野大小,根据时间序列的长度由多个素数组成。实验结果表明,具有 OS-block的模型可以达到与搜索到的最佳感受野大小模型相似的性能,并且由于具有强大的最佳感受野大小捕获能力,简单的具有 OS-block的1D-CNN 模型在四个时间序列基准(包括来自多个领域的单变量和多变量数据)上达到了最佳性能。全面的分析和讨论阐明了为什么OS-block可以捕获不同数据集的最佳感受野大小。

哥德巴赫猜想:任何正偶数都可以写成两个素数的和。

方法

在这里插入图片描述
pk是素数

在这里插入图片描述
在这里插入图片描述

实验

在这里插入图片描述
在这里插入图片描述

总结

本文给出了一个简单的1D-CNN块,即OS-block。它不需要任何特征提取尺度调优,可以实现与具有最佳特征提取尺度的模型相似的性能。关键思想是使用质数设计,以一种有效的方式覆盖所有感受野尺寸。我们进行的实验证明,OS-block可以稳健地捕获来自多个域的数据集上的最佳时间尺度。由于其强大的规模捕获能力,它在多个TSC基准测试上实现了一系列的SOTA性能。此外,OS-CNN的结果揭示了1D-CNN模型的两个特征,这将有利于该领域的发展。在未来,我们可以在以下几方面扩展我们的工作。首先,除了首要的核尺寸设计之外,可能有一个更有效的设计来覆盖所有感受野尺寸。其次,OS-block可以与现有的深度神经结构一起工作,以获得更好的性能,但可能有独特的结构或现有结构的变体更适合OS-block。此外,对OS-block的特征进行了实证分析,并对其特征进行了必要的理论解释。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
您好!对于CNN-LSTM时序预测,您可以将其视为一个将卷积神经网络(CNN)和长短期记忆网络(LSTM)结合使用的模型。这种模型通常用于处理具有时序特征的数据,比如时间序列数据或者文本数据。 具体来说,CNN用于提取输入数据的局部特征,而LSTM则用于捕捉输入数据中的长期依赖关系。这样的结合使得模型能够同时考虑到数据的局部和长期上下文信息,从而更好地进行时序预测。 您可以按照以下步骤来构建CNN-LSTM模型进行时序预测: 1. 数据准备:准备训练数据集和测试数据集,并对其进行预处理,如归一化、序列划分等。 2. CNN特征提取:使用CNN模型对输入数据进行特征提取。您可以使用卷积层和池化层来捕捉输入数据的局部特征。 3. 数据转换:将CNN提取的特征转换为适合LSTM输入的形式。通常是将每个时间步的特征表示作为LSTM的输入。 4. LSTM建模:构建LSTM模型,可以包含多个LSTM层和其他正则化层,如Dropout层,以避免过拟合。 5. 输出层设计:根据您的具体问题,设计适当的输出层。例如,对于回归问题,可以使用一个全连接层输出连续值;对于分类问题,可以使用softmax层输出类别概率。 6. 模型训练:使用训练数据对CNN-LSTM模型进行训练,可以使用适当的损失函数和优化算法。 7. 模型评估:使用测试数据评估模型的性能,可以使用各种指标如均方误差(MSE)或准确率等。 8. 预测:使用已训练好的模型对新的输入数据进行预测。 希望以上信息对您有所帮助!如果您有任何更多的问题,请随时提问。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值