论文笔记-时序预测-FEDformer

在这里插入图片描述
论文标题:FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting
论文链接:
https://arxiv.org/abs/2201.12740
代码链接:
https://github.com/DAMO-DI-ML/ICML2022-FEDformer

摘要

尽管基于变压器的方法显著改善了长期序列预测的最新结果,但它们不仅计算成本高,更重要的是,无法捕捉时间序列的全局视图(例如总体趋势)。为了解决这些问题,我们提出将Transformer与季节趋势分解方法相结合,其中分解方法捕捉时间序列的全局轮廓,而Transformer捕捉更详细的结构。为了进一步提高Transformer的长期预测性能,我们利用了大多数时间序列倾向于在众所周知的基础上(如傅立叶变换)具有稀疏表示的事实,开发了频率增强Transformer。除了更有效之外,被称为频率增强分解变压器({f FEDformer})的方法比标准变压器效率更高,其复杂度与序列长度成线性关系。我们对6个基准数据集的实证研究表明,与最先进的方法相比,FEDformer在多变量和单变量时间序列中分别可以减少14.8%和22.6%的预测误差。

主要贡献

frequency enhanced decomposed Transformer
Fourier enhanced blocks and Wavelet enhanced blocks

模型结构

在这里插入图片描述
Frequency Enchanced Block(FEB)和 Frequency Enhanced Attention(FEA)具有相同的流程:频域投影 -> 采样 -> 学习 -> 频域补全 -> 投影回时域

无论多长的信号输入,模型只需要在频域保留极少的点,就可以恢复大部分的信息

在这里插入图片描述
在这里插入图片描述
傅立叶基具有全局性而小波基具有局部性。小波版的 FEDformer 可以在更复杂的数据集上得到更优的效果。但小波版的 FEDformer 运行时间也会更长。

在这里插入图片描述
在这里插入图片描述

实验

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
采样实验
在这里插入图片描述
速度和内存
在这里插入图片描述
内存占用和运行时间比Informer和Autoformer还是要多一些的。

总结

针对长时间序列预测问题,提出了基于频域分解的 FEDformer 模型。大幅提高了预测精度和模型运行效率。提出了一种基于傅立叶/小波变换的模块,通过在频域进行固定数量的随机采样,使得模型达到线性复杂度同时提高精度。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
您好!对于CNN-LSTM时序预测,您可以将其视为一个将卷积神经网络(CNN)和长短期记忆网络(LSTM)结合使用的模型。这种模型通常用于处理具有时序特征的数据,比如时间序列数据或者文本数据。 具体来说,CNN用于提取输入数据的局部特征,而LSTM则用于捕捉输入数据中的长期依赖关系。这样的结合使得模型能够同时考虑到数据的局部和长期上下文信息,从而更好地进行时序预测。 您可以按照以下步骤来构建CNN-LSTM模型进行时序预测: 1. 数据准备:准备训练数据集和测试数据集,并对其进行预处理,如归一化、序列划分等。 2. CNN特征提取:使用CNN模型对输入数据进行特征提取。您可以使用卷积层和池化层来捕捉输入数据的局部特征。 3. 数据转换:将CNN提取的特征转换为适合LSTM输入的形式。通常是将每个时间步的特征表示作为LSTM的输入。 4. LSTM建模:构建LSTM模型,可以包含多个LSTM层和其他正则化层,如Dropout层,以避免过拟合。 5. 输出层设计:根据您的具体问题,设计适当的输出层。例如,对于回归问题,可以使用一个全连接层输出连续值;对于分类问题,可以使用softmax层输出类别概率。 6. 模型训练:使用训练数据对CNN-LSTM模型进行训练,可以使用适当的损失函数和优化算法。 7. 模型评估:使用测试数据评估模型的性能,可以使用各种指标如均方误差(MSE)或准确率等。 8. 预测:使用已训练好的模型对新的输入数据进行预测。 希望以上信息对您有所帮助!如果您有任何更多的问题,请随时提问。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值