动态规划专题 (II):Leetcode 198 打家劫舍 + Leetcode 213 打家劫舍 II

动态规划专题 (II):Leetcode 198 打家劫舍 + Leetcode 213 打家劫舍 II

Leetcode 198 打家劫舍

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

题解

根据题意:不能抢两家连在一起的。首先简单能够证明,不可能存在两家被抢的家庭之间的距离大于 2 2 2

证明:对于序列 [ 5 , 4 , 3 , 4 , 5 ] [5,4,3,4,5] [5,4,3,4,5] 来说,如果我们只抢头和尾的话,那加上中间那家的价值,一定超过只抢头尾的价值总和,与只抢头尾矛盾。

因此,这个问题转移方程为:

d p [ i ] = max ⁡ { d p [ i − 1 ] , d p [ i − 2 ] + v a l [ i ] } , when  i ≥ 3 边 界 情 况 : d p [ i ] = max ⁡ { d p [ i − 1 ] , d p [ i − 2 ] } , when  i = 2 d p [ i ] = v a l [ i ] , when  i = 1 \begin{aligned} dp[i] &= \max\left\{dp[i-1], dp[i-2]+val[i]\right\}, \text{when $i \ge 3$}\\ 边界情况: \\ dp[i] &= \max\left\{dp[i-1], dp[i-2]\right\}, \text{when $i = 2$}\\ dp[i] &= val[i], \text{when $i = 1$} \end{aligned} dp[i]:dp[i]dp[i]=max{dp[i1],dp[i2]+val[i]},when i3=max{dp[i1],dp[i2]},when i=2=val[i],when i=1

因此代码如下所示:

def rob(nums):
    if not nums:
        return 0
    n = len(nums)
    matrix = [None]*n
    for i in range(0, n):
        if i == 0:
            matrix[i] = nums[i]
        elif i == 1:
            matrix[i] = max(nums[i-1], nums[i])
        else:
            matrix[i] = max(matrix[i-2] + nums[i], matrix[i-1])
    return matrix[-1]

执行结果

执行用时:24 ms

内存消耗: 11.8 MB

在这里插入图片描述

Leetcode 213 打家劫舍 II

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

题解

这个问题较上一个问题更为复杂一点点,就是第一家与最后一家是相邻的。那么分析起来很简单的一个扩展思路就是:进行两个动态规划:

  1. 一个包含第一个不包含最后一个;
  2. 一个包含最后一个不包含第一个。

然后求这两个动态规划的结果中的最大值就是我们的目标结果。

def rob(nums):
    if not nums:
        return 0
    elif len(nums) == 1:
        return nums[0]
    n = len(nums)
    matrix1 = [None]*(n-1)
    matrix2 = [None]*n
    for i in range(0, n-1):
        if i == 0:
            matrix1[i] = nums[i]
        elif i == 1:
            matrix1[i] = max(nums[i-1], nums[i])
        else:
            matrix1[i] = max(matrix1[i-2] + nums[i], matrix1[i-1])
    for i in range(1, n):
        if i == 0:
            matrix2[i] = 0
        elif i == 1:
            matrix2[i] = nums[i]
        elif i == 2:
            matrix2[i] = max(nums[i-1], nums[i])
        else:
            matrix2[i] = max(matrix2[i-2] + nums[i], matrix2[i-1])
    return max(matrix1[-1], matrix2[-1])

执行结果

执行时间:16 ms

内存消耗:11.7 MB

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值