凸优化 [3]:无约束最优化——一阶、二阶条件

无约束最优条件

一阶必要条件:

∇ f ( x ∗ ) = 0 \nabla f(x^*)=0 f(x)=0

必要性:

x ∗ x^* x 是局部最优点(最小值点),则由:
∇ f ( x ∗ ) = lim ⁡ f ( x ) − f ( x ∗ ) x − x ∗ \nabla f(x^*)=\lim \frac{f(x)- f(x^*)}{x-x^*}\\ f(x)=limxxf(x)f(x)
取出其中一个分量 x i ∗ x_i^* xi ∂ f ( x ) ∂ x i > 0 \frac{\partial f(x)}{\partial x_i}>0 xif(x)>0 x i > x ∗ x_i>x^* xi>x ∂ f ( x ) ∂ x i < 0 \frac{\partial f(x)}{\partial x_i}<0 xif(x)<0 x i < x ∗ x_i<x^* xi<x

则由函数的连续性, ∂ f ( x ∗ ) ∂ x i ∗ = 0 \frac{\partial f(x^*)}{\partial x^*_i}=0 xif(x)=0 。得证 □ \square

Remark:

单纯的梯度为 0 0 0 ,不能保证最优点:

二阶必要条件:

H = ∇ 2 f ( x ) = [ ∂ 2 f ( x ) ∂ x 1 ∂ x 1 ⋯ ∂ 2 f ( x ) ∂ x 1 ∂ x n ⋮ ⋱ ⋮ ∂ 2 f ( x ) ∂ x n ∂ x 1 ⋯ ∂ 2 f ( x ) ∂ x n ∂ x n ] { H ⪰ 0 convex H ≻ 0 strictly convex H = \nabla^2 f(x) = \left[\begin{matrix}\frac{\partial^2 f(x)}{\partial x_1\partial x_1}&\cdots&\frac{\partial^2 f(x)}{\partial x_1\partial x_n} \\ \vdots&\ddots&\vdots\\ \frac{\partial^2 f(x)}{\partial x_n\partial x_1}&\cdots&\frac{\partial^2 f(x)}{\partial x_n\partial x_n}\end{matrix}\right]\\ \begin{cases} H\succeq 0& \text{convex}\\ H\succ 0& \text{strictly convex} \end{cases} H=2f(x)=x1x12f(x)xnx12f(x)x1xn2f(x)xnxn2f(x){H0H0convexstrictly convex

必要性:

由二阶 Taylor 展开:
f ( x ) = f ( x ∗ ) + ∇ f ( x ∗ ) T ( x − x ∗ ) + 1 2 ( x − x ∗ ) T ∇ 2 f ( x ∗ ) ( x − x ∗ ) + o ( ∥ x ∗ − x ∥ 2 ) f(x)=f(x^*)+\nabla f(x^*)^T (x-x^*) + \frac{1}{2}(x-x^*)^T \nabla^2f(x^*)(x-x^*)+o(\|x^*-x\|^2) f(x)=f(x)+f(x)T(xx)+21(xx)T2f(x)(xx)+o(xx2)

由一阶必要条件, ∇ f ( x ∗ ) = 0 \nabla f(x^*)=0 f(x)=0 ,又因为是最优值,则:
0 ≤ f ( x ) − f ( x ∗ ) = 1 2 ( x − x ∗ ) T ∇ 2 f ( x ∗ ) ( x − x ∗ ) + o ( ∥ x ∗ − x ∥ 2 ) 0\le f(x)-f(x^*)= \frac{1}{2}(x-x^*)^T \nabla^2f(x^*)(x-x^*)+o(\|x^*-x\|^2) 0f(x)f(x)=21(xx)T2f(x)(xx)+o(xx2)
因为 ∇ 2 f ( x ) \nabla^2 f(x) 2f(x) 正定对称,则由酉分解:
∇ 2 f ( x ) = P Λ P T \nabla^2 f(x)=P\Lambda P^{T} 2f(x)=PΛPT
d ~ = P ( x − x ∗ ) \tilde d=P(x-x^*) d~=P(xx) 则:
1 2 d ~ T ∇ 2 f ( x ∗ ) d ~ = 1 2 ( x − x ∗ ) T Λ ( x − x ∗ ) ≥ 1 2 λ min ⁡ ∥ x − x ∗ ∥ 2 \frac{1}{2}\tilde d^T \nabla^2f(x^*)\tilde d=\frac{1}{2}(x-x^*)^T \Lambda (x-x^*)\ge \frac{1}{2}\lambda_{\min} \|x-x^*\|^2 21d~T2f(x)d~=21(xx)TΛ(xx)21λminxx2
因此:
f ( x ) ≥ f ( x ∗ ) + 1 2 λ min ⁡ ∥ x − x ∗ ∥ 2 f(x)\ge f(x^*)+\frac{1}{2}\lambda_{\min} \|x-x^*\|^2 f(x)f(x)+21λminxx2

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值