Frechet 导数

Frechet 导数

X X X, Y Y Y 是赋范向量空间, 记
L ( X , Y ) = { L : X → Y , 且 L 是线性有界映射 } , \mathcal{L}(X,Y) =\left\{ L:X\rightarrow Y,\text{且}L\text{是线性有界映射} \right\} , L(X,Y)={L:XY,L是线性有界映射},
定义 L L L 的范数为 ∥ L ∥ = s u p ∥ x ∥ X ≤ 1 ∥ L ( x ) ∥ Y \left\| L \right\| =\mathop {\mathrm{sup}} \limits_{\left\| x \right\| _X\le 1}\left\| L\left( x \right) \right\| _Y L=xX1supL(x)Y.

【定义1.1】 (Frechet可微) 设 Ω \Omega Ω X X X 的开子集, 我们称映射 f : Ω → Y f:\Omega \to Y f:ΩY x 0 ∈ Ω x_0 \in \Omega x0Ω 是Frechet可微的, 如果: 存在 L ∈ L ( X , Y ) L\in \mathcal{L}(X,Y) LL(X,Y) ε : X → Y \varepsilon:X\to Y ε:XY, 使得 f ( x ) − f ( x 0 ) = L ( x − x 0 ) + ε ( x − x 0 ) , ∀ x ∈ Ω , f\left( x \right) -f\left( x_0 \right) =L\left( x-x_0 \right) +\varepsilon \left( x-x_0 \right) ,\quad \forall x\in \Omega , f(x)f(x0)=L(xx0)+ε(xx0),xΩ, 其中 ε \varepsilon ε 满足 lim ⁡ ∥ x ∥ X → 0 ∥ ε ( x ) ∥ Y ∥ x ∥ X = 0 \lim \limits_{\left\| x \right\| _X\rightarrow 0} \frac{\left\| \varepsilon \left( x \right) \right\| _Y}{\left\| x \right\| _X}=0 xX0limxXε(x)Y=0.

【Remark 1】等价定义是
∥ f ( x ) − ( f ( x 0 ) + L ( x − x 0 ) ) ∥ Y ∥ x − x 0 ∥ X → 0. \frac{\left\| f\left( x \right) -\left( f\left( x_0 \right) +L\left( x-x_0 \right) \right) \right\| _Y}{\left\| x-x_0 \right\| _X}\rightarrow 0. xx0Xf(x)(f(x0)+L(xx0))Y0.

【Remark 2】 L L L 是唯一的, 且称之为 Frechet 导数, 记作 L = d f ( x 0 ) L=\mathrm{d}f(x_0) L=df(x0) D f ( x 0 ) Df(x_0) Df(x0) f ′ ( x 0 ) f^{\prime}(x_0) f(x0).

【Remark 3】(高阶可微) 我们称 f f f x 0 x_0 x0 2 2 2 阶 Frechet 可微的, 如果 (1) f f f 在 某个 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ) 可微; (2) x → d f x \to \mathrm{d}f xdf 作为 U → L ( X , Y ) U\to \mathcal{L}(X,Y) UL(X,Y) 映射在 x 0 x_0 x0 可微, 且有 d 2 f ∈ L ( X , L ( X , Y ) ) = : L 2 ( X , Y ) \mathrm{d}^2 f \in \mathcal{L}(X,\mathcal{L}(X,Y))=:\mathcal{L}^2(X,Y) d2fL(X,L(X,Y))=:L2(X,Y).

同理, 有 d m f ∈ L m ( X , Y ) \mathrm{d}^m f \in \mathcal{L}^m(X,Y) dmfLm(X,Y), 可以看出
L m ( X , Y ) = { L : X m → Y , L 是 m 线性且有界的 } . \mathcal{L} ^m\left( X,Y \right) =\left\{ L:X^m\rightarrow Y,L\text{是}m\text{线性且有界的} \right\}. Lm(X,Y)={L:XmY,Lm线性且有界的}.

【Remark 4】若 f ∈ C m ( Ω , Y ) f \in C^m(\Omega,Y) fCm(Ω,Y), 则 d m f ( x 0 ) \mathrm{d}^m f(x_0) dmf(x0) m m m 对称的.

【Remark 5】 如果 Y Y Y 是 Banach 空间, 则有微积分基本定理成立. 若 g ∈ C 1 ( ( a , b ) , Y ) g\in C^1((a,b),Y) gC1((a,b),Y), 则有
g ( y ) − g ( x ) = ∫ x y g ′ ( t ) d t . g(y) - g(x) = \int_{x}^{y} g^{\prime}(t)\mathrm{d}t. g(y)g(x)=xyg(t)dt.

【Remark 6】中值定理, 不一定成立.

【推论】(中值不等式) 若 g : [ a , b ] → Y g: [a,b]\to Y g:[a,b]Y 是连续、可微, 则有
∥ g ( y ) − g ( x ) ∥ ≤ ∣ x − y ∣ ⋅ s u p 0 < t < 1 ∥ g ′ ( x + t ( y − x ) ) ∥ . \left\| g\left( y \right) -g\left( x \right) \right\| \le \left| x-y \right|\cdot \mathop {\mathrm{sup}} \limits_{0<t<1}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) \right\| . g(y)g(x)xy0<t<1supg(x+t(yx)).
此外, 若 g ∈ C 1 g\in C^1 gC1, 那么
∥ g ( y ) − g ( x ) − g ′ ( y − x ) ∥ ≤ ∣ x − y ∣ ⋅ s u p 0 < t < 1 ∥ g ′ ( x + t ( y − x ) ) − g ′ ( x ) ∥ . \left\| g\left( y \right) -g\left( x \right) -g^{\prime}\left( y-x \right) \right\| \le \left| x-y \right|\cdot \mathop {\mathrm{sup}} \limits_{0<t<1}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) -g^{\prime}\left( x \right) \right\|. g(y)g(x)g(yx)xy0<t<1supg(x+t(yx))g(x).

证明: 设 M = s u p 0 < t < 1 ∥ g ′ ( x + t ( y − x ) ) ∥ M=\mathop {\mathrm{sup}} \limits_{0<t<1}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) \right\| M=0<t<1supg(x+t(yx)), 记
E = { 0 ≤ t ≤ 1 : ∥ g ( x + t ( y − x ) ) − g ( x ) ∥ ≤ M t ∣ y − x ∣ } , E=\left\{ 0\le t\le 1:\left\| g\left( x+t\left( y-x \right) \right) -g\left( x \right) \right\| \le Mt\left| y-x \right| \right\} , E={0t1:g(x+t(yx))g(x)Mtyx},
显然 E E E 是闭集, 且 0 ∈ E 0\in E 0E, 记其最大值为 t 0 t_0 t0, 下证 t 0 = 1 t_0=1 t0=1: 假设 t 0 ≠ 1 t_0\neq 1 t0=1, 则有 ε ≪ 1 \varepsilon \ll 1 ε1 使得 t 0 + ε < 1 t_0+\varepsilon<1 t0+ε<1 ε < t 0 \varepsilon<t_0 ε<t0, 故
∥ g ( x + ( t 0 + ε ) ( y − x ) ) − g ( x ) ∥ ≤ ∥ g ( x + ( t 0 + ε ) ( y − x ) ) − g ( x + t 0 ( y − x ) ) ∥ + ∥ g ( x + t 0 ( y − x ) ) − g ( x ) ∥ ≤ M ε ∣ y − x ∣ + M t 0 ∣ y − x ∣ = M ( t 0 + ε ) ∣ y − x ∣ . \begin{aligned} \left\| g\left( x+\left( t_0+\varepsilon \right) \left( y-x \right) \right) -g\left( x \right) \right\| \le &\left\| g\left( x+\left( t_0+\varepsilon \right) \left( y-x \right) \right) -g\left( x+t_0\left( y-x \right) \right) \right\|\\ &+\left\| g\left( x+t_0\left( y-x \right) \right) -g\left( x \right) \right\|\\ \le &M\varepsilon \left| y-x \right|+Mt_0\left| y-x \right|=M\left( t_0+\varepsilon \right) \left| y-x \right|.\\ \end{aligned} g(x+(t0+ε)(yx))g(x)g(x+(t0+ε)(yx))g(x+t0(yx))+g(x+t0(yx))g(x)yx+Mt0yx=M(t0+ε)yx.
这说明 t 0 + ε ∈ E t_0+\varepsilon \in E t0+εE, 矛盾, 因此 t 0 = 1 t_0=1 t0=1, 中值不等式证明完成.

此外, 我们设 v ∈ Y v\in Y vY, 定义 f ( y ) = g ( y ) − v y f\left( y \right) =g\left( y \right) -vy f(y)=g(y)vy, 则有
∥ g ( y ) − g ( x ) − v ( y − x ) ∥ ≤ ∣ y − x ∣ ⋅ s u p ∥ g ′ ( x + t ( y − x ) ) − v ∥ . \left\| g\left( y \right) -g\left( x \right) -v\left( y-x \right) \right\| \le \left| y-x \right|\cdot \mathrm{sup}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) -v \right\|. g(y)g(x)v(yx)yxsupg(x+t(yx))v.
此处可取 v = g ′ ( x ) v=g^{\prime}(x) v=g(x).

【推论】( C 1 C^1 C1 条件) 令 D ⊂ S X 1 = { x ∈ X : ∥ x ∥ ≤ 1 } D \subset S_X^1 =\{x \in X: \left\| x \right\| \le 1\} DSX1={xX:x1}, s.t. s p a n ( D ) ‾ = X \overline{\mathrm{span}(D)} = X span(D)=X. 则 f ∈ C 1 ( Ω , Y ) f\in C^1(\Omega, Y) fC1(Ω,Y) 当且仅当:
(1) f f f 是连续的;
(2) 映射 t → f ( x + t x ^ ) t\to f(x+t\hat{x}) tf(x+tx^) 是在 { t : x + t x ^ ∈ Ω } \{t:x+t\hat{x}\in\Omega\} {t:x+tx^Ω} 上可微的, 对任意 x ^ ∈ D \hat{x} \in D x^D 成立;
(3) 存在 g : Ω → L ( X , Y ) g:\Omega\to \mathcal{L}(X,Y) g:ΩL(X,Y) 使得 d d t f ( x + t x ^ ) = g ( x + t x ^ ) \frac{\mathrm{d}}{\mathrm{d}t}f(x+t\hat{x}) = g(x+t\hat{x}) dtdf(x+tx^)=g(x+tx^).

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值