Frechet 导数
设
X
X
X,
Y
Y
Y 是赋范向量空间, 记
L
(
X
,
Y
)
=
{
L
:
X
→
Y
,
且
L
是线性有界映射
}
,
\mathcal{L}(X,Y) =\left\{ L:X\rightarrow Y,\text{且}L\text{是线性有界映射} \right\} ,
L(X,Y)={L:X→Y,且L是线性有界映射},
定义
L
L
L 的范数为
∥
L
∥
=
s
u
p
∥
x
∥
X
≤
1
∥
L
(
x
)
∥
Y
\left\| L \right\| =\mathop {\mathrm{sup}} \limits_{\left\| x \right\| _X\le 1}\left\| L\left( x \right) \right\| _Y
∥L∥=∥x∥X≤1sup∥L(x)∥Y.
【定义1.1】 (Frechet可微) 设 Ω \Omega Ω 是 X X X 的开子集, 我们称映射 f : Ω → Y f:\Omega \to Y f:Ω→Y 在 x 0 ∈ Ω x_0 \in \Omega x0∈Ω 是Frechet可微的, 如果: 存在 L ∈ L ( X , Y ) L\in \mathcal{L}(X,Y) L∈L(X,Y) 和 ε : X → Y \varepsilon:X\to Y ε:X→Y, 使得 f ( x ) − f ( x 0 ) = L ( x − x 0 ) + ε ( x − x 0 ) , ∀ x ∈ Ω , f\left( x \right) -f\left( x_0 \right) =L\left( x-x_0 \right) +\varepsilon \left( x-x_0 \right) ,\quad \forall x\in \Omega , f(x)−f(x0)=L(x−x0)+ε(x−x0),∀x∈Ω, 其中 ε \varepsilon ε 满足 lim ∥ x ∥ X → 0 ∥ ε ( x ) ∥ Y ∥ x ∥ X = 0 \lim \limits_{\left\| x \right\| _X\rightarrow 0} \frac{\left\| \varepsilon \left( x \right) \right\| _Y}{\left\| x \right\| _X}=0 ∥x∥X→0lim∥x∥X∥ε(x)∥Y=0.
【Remark 1】等价定义是
∥
f
(
x
)
−
(
f
(
x
0
)
+
L
(
x
−
x
0
)
)
∥
Y
∥
x
−
x
0
∥
X
→
0.
\frac{\left\| f\left( x \right) -\left( f\left( x_0 \right) +L\left( x-x_0 \right) \right) \right\| _Y}{\left\| x-x_0 \right\| _X}\rightarrow 0.
∥x−x0∥X∥f(x)−(f(x0)+L(x−x0))∥Y→0.
【Remark 2】 L L L 是唯一的, 且称之为 Frechet 导数, 记作 L = d f ( x 0 ) L=\mathrm{d}f(x_0) L=df(x0) 或 D f ( x 0 ) Df(x_0) Df(x0) 或 f ′ ( x 0 ) f^{\prime}(x_0) f′(x0).
【Remark 3】(高阶可微) 我们称 f f f 在 x 0 x_0 x0 是 2 2 2 阶 Frechet 可微的, 如果 (1) f f f 在 某个 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ) 可微; (2) x → d f x \to \mathrm{d}f x→df 作为 U → L ( X , Y ) U\to \mathcal{L}(X,Y) U→L(X,Y) 映射在 x 0 x_0 x0 可微, 且有 d 2 f ∈ L ( X , L ( X , Y ) ) = : L 2 ( X , Y ) \mathrm{d}^2 f \in \mathcal{L}(X,\mathcal{L}(X,Y))=:\mathcal{L}^2(X,Y) d2f∈L(X,L(X,Y))=:L2(X,Y).
同理, 有
d
m
f
∈
L
m
(
X
,
Y
)
\mathrm{d}^m f \in \mathcal{L}^m(X,Y)
dmf∈Lm(X,Y), 可以看出
L
m
(
X
,
Y
)
=
{
L
:
X
m
→
Y
,
L
是
m
线性且有界的
}
.
\mathcal{L} ^m\left( X,Y \right) =\left\{ L:X^m\rightarrow Y,L\text{是}m\text{线性且有界的} \right\}.
Lm(X,Y)={L:Xm→Y,L是m线性且有界的}.
【Remark 4】若 f ∈ C m ( Ω , Y ) f \in C^m(\Omega,Y) f∈Cm(Ω,Y), 则 d m f ( x 0 ) \mathrm{d}^m f(x_0) dmf(x0) 是 m m m 对称的.
【Remark 5】 如果
Y
Y
Y 是 Banach 空间, 则有微积分基本定理成立. 若
g
∈
C
1
(
(
a
,
b
)
,
Y
)
g\in C^1((a,b),Y)
g∈C1((a,b),Y), 则有
g
(
y
)
−
g
(
x
)
=
∫
x
y
g
′
(
t
)
d
t
.
g(y) - g(x) = \int_{x}^{y} g^{\prime}(t)\mathrm{d}t.
g(y)−g(x)=∫xyg′(t)dt.
【Remark 6】中值定理, 不一定成立.
【推论】(中值不等式) 若
g
:
[
a
,
b
]
→
Y
g: [a,b]\to Y
g:[a,b]→Y 是连续、可微, 则有
∥
g
(
y
)
−
g
(
x
)
∥
≤
∣
x
−
y
∣
⋅
s
u
p
0
<
t
<
1
∥
g
′
(
x
+
t
(
y
−
x
)
)
∥
.
\left\| g\left( y \right) -g\left( x \right) \right\| \le \left| x-y \right|\cdot \mathop {\mathrm{sup}} \limits_{0<t<1}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) \right\| .
∥g(y)−g(x)∥≤∣x−y∣⋅0<t<1sup∥g′(x+t(y−x))∥.
此外, 若
g
∈
C
1
g\in C^1
g∈C1, 那么
∥
g
(
y
)
−
g
(
x
)
−
g
′
(
y
−
x
)
∥
≤
∣
x
−
y
∣
⋅
s
u
p
0
<
t
<
1
∥
g
′
(
x
+
t
(
y
−
x
)
)
−
g
′
(
x
)
∥
.
\left\| g\left( y \right) -g\left( x \right) -g^{\prime}\left( y-x \right) \right\| \le \left| x-y \right|\cdot \mathop {\mathrm{sup}} \limits_{0<t<1}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) -g^{\prime}\left( x \right) \right\|.
∥g(y)−g(x)−g′(y−x)∥≤∣x−y∣⋅0<t<1sup∥g′(x+t(y−x))−g′(x)∥.
证明: 设
M
=
s
u
p
0
<
t
<
1
∥
g
′
(
x
+
t
(
y
−
x
)
)
∥
M=\mathop {\mathrm{sup}} \limits_{0<t<1}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) \right\|
M=0<t<1sup∥g′(x+t(y−x))∥, 记
E
=
{
0
≤
t
≤
1
:
∥
g
(
x
+
t
(
y
−
x
)
)
−
g
(
x
)
∥
≤
M
t
∣
y
−
x
∣
}
,
E=\left\{ 0\le t\le 1:\left\| g\left( x+t\left( y-x \right) \right) -g\left( x \right) \right\| \le Mt\left| y-x \right| \right\} ,
E={0≤t≤1:∥g(x+t(y−x))−g(x)∥≤Mt∣y−x∣},
显然
E
E
E 是闭集, 且
0
∈
E
0\in E
0∈E, 记其最大值为
t
0
t_0
t0, 下证
t
0
=
1
t_0=1
t0=1: 假设
t
0
≠
1
t_0\neq 1
t0=1, 则有
ε
≪
1
\varepsilon \ll 1
ε≪1 使得
t
0
+
ε
<
1
t_0+\varepsilon<1
t0+ε<1 及
ε
<
t
0
\varepsilon<t_0
ε<t0, 故
∥
g
(
x
+
(
t
0
+
ε
)
(
y
−
x
)
)
−
g
(
x
)
∥
≤
∥
g
(
x
+
(
t
0
+
ε
)
(
y
−
x
)
)
−
g
(
x
+
t
0
(
y
−
x
)
)
∥
+
∥
g
(
x
+
t
0
(
y
−
x
)
)
−
g
(
x
)
∥
≤
M
ε
∣
y
−
x
∣
+
M
t
0
∣
y
−
x
∣
=
M
(
t
0
+
ε
)
∣
y
−
x
∣
.
\begin{aligned} \left\| g\left( x+\left( t_0+\varepsilon \right) \left( y-x \right) \right) -g\left( x \right) \right\| \le &\left\| g\left( x+\left( t_0+\varepsilon \right) \left( y-x \right) \right) -g\left( x+t_0\left( y-x \right) \right) \right\|\\ &+\left\| g\left( x+t_0\left( y-x \right) \right) -g\left( x \right) \right\|\\ \le &M\varepsilon \left| y-x \right|+Mt_0\left| y-x \right|=M\left( t_0+\varepsilon \right) \left| y-x \right|.\\ \end{aligned}
∥g(x+(t0+ε)(y−x))−g(x)∥≤≤∥g(x+(t0+ε)(y−x))−g(x+t0(y−x))∥+∥g(x+t0(y−x))−g(x)∥Mε∣y−x∣+Mt0∣y−x∣=M(t0+ε)∣y−x∣.
这说明
t
0
+
ε
∈
E
t_0+\varepsilon \in E
t0+ε∈E, 矛盾, 因此
t
0
=
1
t_0=1
t0=1, 中值不等式证明完成.
此外, 我们设
v
∈
Y
v\in Y
v∈Y, 定义
f
(
y
)
=
g
(
y
)
−
v
y
f\left( y \right) =g\left( y \right) -vy
f(y)=g(y)−vy, 则有
∥
g
(
y
)
−
g
(
x
)
−
v
(
y
−
x
)
∥
≤
∣
y
−
x
∣
⋅
s
u
p
∥
g
′
(
x
+
t
(
y
−
x
)
)
−
v
∥
.
\left\| g\left( y \right) -g\left( x \right) -v\left( y-x \right) \right\| \le \left| y-x \right|\cdot \mathrm{sup}\left\| g^{\prime}\left( x+t\left( y-x \right) \right) -v \right\|.
∥g(y)−g(x)−v(y−x)∥≤∣y−x∣⋅sup∥g′(x+t(y−x))−v∥.
此处可取
v
=
g
′
(
x
)
v=g^{\prime}(x)
v=g′(x).
【推论】(
C
1
C^1
C1 条件) 令
D
⊂
S
X
1
=
{
x
∈
X
:
∥
x
∥
≤
1
}
D \subset S_X^1 =\{x \in X: \left\| x \right\| \le 1\}
D⊂SX1={x∈X:∥x∥≤1}, s.t.
s
p
a
n
(
D
)
‾
=
X
\overline{\mathrm{span}(D)} = X
span(D)=X. 则
f
∈
C
1
(
Ω
,
Y
)
f\in C^1(\Omega, Y)
f∈C1(Ω,Y) 当且仅当:
(1)
f
f
f 是连续的;
(2) 映射
t
→
f
(
x
+
t
x
^
)
t\to f(x+t\hat{x})
t→f(x+tx^) 是在
{
t
:
x
+
t
x
^
∈
Ω
}
\{t:x+t\hat{x}\in\Omega\}
{t:x+tx^∈Ω} 上可微的, 对任意
x
^
∈
D
\hat{x} \in D
x^∈D 成立;
(3) 存在
g
:
Ω
→
L
(
X
,
Y
)
g:\Omega\to \mathcal{L}(X,Y)
g:Ω→L(X,Y) 使得
d
d
t
f
(
x
+
t
x
^
)
=
g
(
x
+
t
x
^
)
\frac{\mathrm{d}}{\mathrm{d}t}f(x+t\hat{x}) = g(x+t\hat{x})
dtdf(x+tx^)=g(x+tx^).