鲁津定理, 可测函数与连续函数, 可积函数与连续函数

鲁津定理, 可测函数与连续函数

Ω \Omega Ω R d \mathbb{R}^d Rd 的子集, Ω \Omega Ω 上的连续函数一定可测, 反过来不一定, 但鲁津定理告诉了我们, 可测函数基本上是连续函数.

【定理1】(鲁津定理) 设 f f f Ω \Omega Ω 上 a.e. 有限的可测函数, 那么对任意 δ > 0 \delta>0 δ>0, 存在闭子集 F δ ⊂ Ω F_{\delta} \subset \Omega FδΩ, s.t., f f f F δ F_{\delta} Fδ 上的连续函数, 且 μ ( Ω − F δ ) < δ \mu(\Omega-F_{\delta})<\delta μ(ΩFδ)<δ.

证明: 用经典方法来证明.

(1) 对于简单函数 f = ∑ k = 1 m c k I A i f=\sum_{k=1}^m c_k I_{A_i} f=k=1mckIAi, 其中 c 1 , ⋯   , c m ≥ 0 c_1,\cdots,c_m \ge 0 c1,,cm0 各不相等, 且可测集 A 1 , ⋯   , A m A_1,\cdots,A_m A1,,Am 各不相交, ⋃ k = 1 m A k = Ω \bigcup_{k=1}^m A_k = \Omega k=1mAk=Ω. 显然, 只需将不连续点用很小的一个集合去除即可, 或说: 对任意 i i i, 一定存在 F i ⊂ A i F_i \subset A_i FiAi, 使得 f f f F i F_i Fi 上连续, 且 μ ( A i − F i ) < δ / m \mu(A_i-F_i)<\delta/m μ(AiFi)<δ/m, 因此结论容易成立.

(2) 对于有界可测函数 f f f. 一定存在简单函数列 φ n ( x ) \varphi_n(x) φn(x) 一致收敛于 f f f, 我们先找 F n F_{n} Fn 使得 φ n ( x ) \varphi_n(x) φn(x) 连续且 μ ( Ω − F n ) < δ / 2 n \mu(\Omega-F_n)<\delta/2^n μ(ΩFn)<δ/2n, 则令 F δ = ⋂ F n F_{\delta}=\bigcap F_n Fδ=Fn, 有 μ ( Ω − F δ ) < δ \mu(\Omega-F_{\delta})<\delta μ(ΩFδ)<δ, 且对 x 0 ∈ F δ x_0\in F_{\delta} x0Fδ 上, 对任意 ε \varepsilon ε, 找足够小 δ \delta δ 和足够大 n n n, 构造邻域 D x 0 , δ = U ( x 0 , δ ) ∩ F δ D_{x_0,\delta}=U(x_0,\delta)\cap F_{\delta} Dx0,δ=U(x0,δ)Fδ, 当 x ∈ D x 0 , δ x\in D_{x_0,\delta} xDx0,δ 时, 有
∣ f ( x ) − f ( x 0 ) ∣ = ∣ f ( x ) − φ n ( x ) + φ n ( x ) − φ n ( x 0 ) + φ n ( x 0 ) − f ( x 0 ) ∣ ≤ ∣ f ( x ) − φ n ( x ) ∣ + ∣ φ n ( x ) − φ n ( x 0 ) ∣ + ∣ φ n ( x 0 ) − f ( x 0 ) ∣ ≤ ε 3 + ε 3 + ε 3 = ε . \begin{aligned} \left| f\left( x \right) -f\left( x_0 \right) \right|&=\left| f\left( x \right) -\varphi _n\left( x \right) +\varphi _n\left( x \right) -\varphi _n\left( x_0 \right) +\varphi _n\left( x_0 \right) -f\left( x_0 \right) \right|\\ &\le \left| f\left( x \right) -\varphi _n\left( x \right) \right|+\left| \varphi _n\left( x \right) -\varphi _n\left( x_0 \right) \right|+\left| \varphi _n\left( x_0 \right) -f\left( x_0 \right) \right|\\ &\le \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .\\ \end{aligned} f(x)f(x0)=f(x)φn(x)+φn(x)φn(x0)+φn(x0)f(x0)f(x)φn(x)+φn(x)φn(x0)+φn(x0)f(x0)3ε+3ε+3ε=ε.

(3) 对于一般可测函数 f f f, 不妨设其有限. 定义 g ( x ) = f ( x ) 1 + ∣ f ( x ) ∣ g\left( x \right) =\frac{f\left( x \right)}{1+\left| f\left( x \right) \right|} g(x)=1+f(x)f(x), g g g 成为有界可测函数, 且 ∣ g ∣ < 1 |g|<1 g<1. 而 f = g 1 − ∣ g ∣ f = \frac{g}{1-|g|} f=1gg, 在 g g g 连续的集合上, f f f 也连续.


【推论2】 对于 Ω \Omega Ω 上 a.e. 有限的可测函数 f f f, 对任意 δ > 0 \delta>0 δ>0, 一定可以找到连续函数 g g g, 使得 μ ( { f ≠ g } ) < δ \mu \left( \left\{ f\ne g \right\} \right) <\delta μ({f=g})<δ. 如果 Ω \Omega Ω 是有界集, 则还可以使得 g g g 具有紧支集.

【推论2’】 对于 Ω \Omega Ω 上 a.e. 有限的可测函数 f f f, 对任意 δ > 0 \delta>0 δ>0, 一定可以找到连续函数 g g g, 使得存在一个闭集 F F F, 在其上 f = g f=g f=g, 且 μ ( Ω − F ) < δ \mu(\Omega-F)<\delta μ(ΩF)<δ, 此外
s u p R d g ( x ) = s u p F f ( x ) , i n f R d g ( x ) = i n f F f ( x ) . \mathop {\mathrm{sup}} \limits_{\mathbb{R} ^d}g\left( x \right) =\mathop {\mathrm{sup}} \limits_{F}f\left( x \right) ,\quad \mathop {\mathrm{inf}} \limits_{\mathbb{R} ^d}g\left( x \right) =\mathop {\mathrm{inf}} \limits_{F}f\left( x \right) . Rdsupg(x)=Fsupf(x),Rdinfg(x)=Finff(x).
自然, 如果 Ω \Omega Ω 是有界集, F F F 可以是紧的.

【推论3】设 f f f Ω \Omega Ω 上 a.e. 有限的可测函数, 则存在 R d \mathbb{R}^d Rd 上的连续函数列 g n ( x ) g_n(x) gn(x), 使得在 Ω \Omega Ω g n ( x ) → f g_n(x)\to f gn(x)f, a.e.

证明: 对任意 n n n, 存在 g n ( x ) g_n(x) gn(x), 使得 μ ( { g n ≠ f } ) < 1 n \mu \left( \left\{ g_n\ne f \right\} \right) <\frac{1}{n} μ({gn=f})<n1, 这说明 g n g_n gn 依测度收敛于 f f f. 再根据 Riesz定理取一个几乎处处收敛的子列即可.

μ ( { f ≠ g } ) < δ \mu \left( \left\{ f\ne g \right\} \right) <\delta μ({f=g})<δ. 如果 Ω \Omega Ω 是有界集, 则还可以使得 g g g 具有紧支集.


可积函数与连续函数

可积函数类 L ( Ω ) L(\Omega) L(Ω) 指的是满足 ∫ Ω ∣ f ∣ d μ \int_{\Omega} |f|\mathrm{d}\mu Ωfdμ 的可测函数全体. 如果 f ∈ L ( Ω ) f\in L(\Omega) fL(Ω), 那么它和连续函数之间也有一定关系.

【定理4】若 f ∈ L ( Ω ) f\in L(\Omega) fL(Ω), 对任意 ε > 0 \varepsilon>0 ε>0, 存在 R d \mathbb{R}^d Rd 中具有紧支集的连续函数 g ε g_{\varepsilon} gε, s.t.
∫ Ω ∣ f ( x ) − g ε ( x ) ∣ d μ < ε \int_{\Omega}{\left| f\left( x \right) -g_{\varepsilon}\left( x \right) \right|\mathrm{d}\mu}<\varepsilon Ωf(x)gε(x)dμ<ε

证明: 考虑具有紧支集的简单函数 φ ( x ) \varphi(x) φ(x), s.t.
∫ Ω ∣ f ( x ) − φ ( x ) ∣ d μ < ε 2 . \int_{\Omega}{\left| f\left( x \right) -\varphi \left( x \right) \right|\mathrm{d}\mu}<\frac{\varepsilon}{2}. Ωf(x)φ(x)dμ<2ε.
随后不妨设 ∣ φ ( x ) ∣ ≤ M |\varphi(x)|\le M φ(x)M, 根据鲁津定理的推论, 有具有紧支集的连续函数 g ε ( x ) g_{\varepsilon}(x) gε(x), 其中 ∣ g ε ∣ ≤ M |g_{\varepsilon}|\le M gεM, 且
μ ( A ) = μ ( { ∣ φ ( x ) − g ( x ) ∣ > 0 } ) < ε 4 M , \mu \left( A \right) =\mu \left( \left\{ \left| \varphi \left( x \right) -g\left( x \right) \right|>0 \right\} \right) <\frac{\varepsilon}{4M}, μ(A)=μ({φ(x)g(x)>0})<4Mε,
因此有
∫ Ω ∣ φ ( x ) − g ε ( x ) ∣ d μ = ∫ A ∣ φ ( x ) − g ε ( x ) ∣ d μ ≤ 2 M ⋅ μ ( A ) < ε 2 . \int_{\Omega}{\left| \varphi \left( x \right) -g_{\varepsilon}\left( x \right) \right|\mathrm{d}\mu}=\int_A{\left| \varphi \left( x \right) -g_{\varepsilon}\left( x \right) \right|\mathrm{d}\mu}\le 2M\cdot \mu \left( A \right) <\frac{\varepsilon}{2}. Ωφ(x)gε(x)dμ=Aφ(x)gε(x)dμ2Mμ(A)<2ε.

[Remark]: 对于 f ∈ L ( Ω ) f\in L(\Omega) fL(Ω), 考虑分解 f = f 1 + f 2 f=f_1+f_2 f=f1+f2, 其中 f 1 f_1 f1 是具有紧支集的连续函数, ∣ f 2 ∣ |f_2| f2 Ω \Omega Ω 上的积分小于 ε \varepsilon ε.


下面这个推论是显然的, 只需令定理4中的 ε = 1 / n \varepsilon =1/n ε=1/n, 然后根据推论3 即得.

【推论5】对于 f ∈ L ( Ω ) f\in L(\Omega) fL(Ω), 一定存在紧支集的连续函数列 g n ( x ) → f g_n(x) \to f gn(x)f, a.e., 且使得
∫ Ω ∣ f ( x ) − g n ( x ) ∣ d μ → 0 , n → ∞ . \int_{\Omega} |f(x)-g_n(x)| \mathrm{d}\mu \to 0, \quad n\to \infty. Ωf(x)gn(x)dμ0,n∞.


【推论6】对于 f ∈ L ( Ω ) f\in L(\Omega) fL(Ω), 一定存在紧支撑集的阶梯函数列 φ n ( x ) → f \varphi_n(x) \to f φn(x)f, a.e., 且使得
∫ Ω ∣ f ( x ) − φ n ( x ) ∣ d μ → 0 , n → ∞ . \int_{\Omega} |f(x)-\varphi_n(x)| \mathrm{d}\mu \to 0, \quad n\to \infty. Ωf(x)φn(x)dμ0,n∞.

证明: 只需利用 ∣ f ( x ) − φ n ( x ) ∣ ≤ ∣ f ( x ) − g n ( x ) ∣ + ∣ g n ( x ) − φ n ( x ) ∣ \left| f\left( x \right) -\varphi _n\left( x \right) \right|\le \left| f\left( x \right) -g_n\left( x \right) \right|+\left| g_n\left( x \right) -\varphi _n\left( x \right) \right| f(x)φn(x)f(x)gn(x)+gn(x)φn(x).

构造方式是: 不妨考虑 g n ( x ) g_n(x) gn(x) 的紧支集是 G G G, 它一定含于某个闭方体 E = { x : − k 0 ≤ x i ≤ k 0 , i = 1 , 2 , ⋯   , d } E=\{x: -k_0\le x_i\le k_0,i=1,2,\cdots,d \} E={x:k0xik0,i=1,2,,d}, 一定存在一个阶梯函数
φ n ( x ) = ∑ i = 1 N c i I E i ( x ) , \varphi _n\left( x \right) =\sum_{i=1}^N{c_iI_{E_i}\left( x \right)}, φn(x)=i=1NciIEi(x),
其中 E i E_i Ei E E E 的子二进方体, 使得
∫ E ∣ g n ( x ) − φ n ( x ) ∣ d μ < ε 2 . \int_E{\left| g_n\left( x \right) -\varphi _n\left( x \right) \right|\mathrm{d}\mu}<\frac{\varepsilon}{2}. Egn(x)φn(x)dμ<2ε.
这样可以取 ε = 1 / n \varepsilon=1/n ε=1/n 使得 ∫ Ω ∣ f ( x ) − φ n ( x ) ∣ d μ → 0 , n → ∞ \int_{\Omega} |f(x)-\varphi_n(x)| \mathrm{d}\mu \to 0, \quad n\to \infty Ωf(x)φn(x)dμ0,n. 至于几乎处处收敛性, 有
μ ( { ∣ f ( x ) − φ n ( x ) ∣ > σ } ) ≤ 1 σ ∫ Ω ∣ f ( x ) − φ n ( x ) ∣ d μ → 0 , \mu \left( \left\{ \left| f\left( x \right) -\varphi _n\left( x \right) \right|>\sigma \right\} \right) \le \frac{1}{\sigma}\int_{\Omega}{\left| f\left( x \right) -\varphi _n\left( x \right) \right|\mathrm{d}\mu}\rightarrow 0, μ({f(x)φn(x)>σ})σ1Ωf(x)φn(x)dμ0,
即依测度收敛, 再根据 Riesz 定理取一个子列使得 a.e. 收敛成立.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值