鲁津定理, 可测函数与连续函数
设 Ω \Omega Ω 是 R d \mathbb{R}^d Rd 的子集, Ω \Omega Ω 上的连续函数一定可测, 反过来不一定, 但鲁津定理告诉了我们, 可测函数基本上是连续函数.
【定理1】(鲁津定理) 设 f f f 是 Ω \Omega Ω 上 a.e. 有限的可测函数, 那么对任意 δ > 0 \delta>0 δ>0, 存在闭子集 F δ ⊂ Ω F_{\delta} \subset \Omega Fδ⊂Ω, s.t., f f f 在 F δ F_{\delta} Fδ 上的连续函数, 且 μ ( Ω − F δ ) < δ \mu(\Omega-F_{\delta})<\delta μ(Ω−Fδ)<δ.
证明: 用经典方法来证明.
(1) 对于简单函数 f = ∑ k = 1 m c k I A i f=\sum_{k=1}^m c_k I_{A_i} f=∑k=1mckIAi, 其中 c 1 , ⋯ , c m ≥ 0 c_1,\cdots,c_m \ge 0 c1,⋯,cm≥0 各不相等, 且可测集 A 1 , ⋯ , A m A_1,\cdots,A_m A1,⋯,Am 各不相交, ⋃ k = 1 m A k = Ω \bigcup_{k=1}^m A_k = \Omega ⋃k=1mAk=Ω. 显然, 只需将不连续点用很小的一个集合去除即可, 或说: 对任意 i i i, 一定存在 F i ⊂ A i F_i \subset A_i Fi⊂Ai, 使得 f f f 在 F i F_i Fi 上连续, 且 μ ( A i − F i ) < δ / m \mu(A_i-F_i)<\delta/m μ(Ai−Fi)<δ/m, 因此结论容易成立.
(2) 对于有界可测函数
f
f
f. 一定存在简单函数列
φ
n
(
x
)
\varphi_n(x)
φn(x) 一致收敛于
f
f
f, 我们先找
F
n
F_{n}
Fn 使得
φ
n
(
x
)
\varphi_n(x)
φn(x) 连续且
μ
(
Ω
−
F
n
)
<
δ
/
2
n
\mu(\Omega-F_n)<\delta/2^n
μ(Ω−Fn)<δ/2n, 则令
F
δ
=
⋂
F
n
F_{\delta}=\bigcap F_n
Fδ=⋂Fn, 有
μ
(
Ω
−
F
δ
)
<
δ
\mu(\Omega-F_{\delta})<\delta
μ(Ω−Fδ)<δ, 且对
x
0
∈
F
δ
x_0\in F_{\delta}
x0∈Fδ 上, 对任意
ε
\varepsilon
ε, 找足够小
δ
\delta
δ 和足够大
n
n
n, 构造邻域
D
x
0
,
δ
=
U
(
x
0
,
δ
)
∩
F
δ
D_{x_0,\delta}=U(x_0,\delta)\cap F_{\delta}
Dx0,δ=U(x0,δ)∩Fδ, 当
x
∈
D
x
0
,
δ
x\in D_{x_0,\delta}
x∈Dx0,δ 时, 有
∣
f
(
x
)
−
f
(
x
0
)
∣
=
∣
f
(
x
)
−
φ
n
(
x
)
+
φ
n
(
x
)
−
φ
n
(
x
0
)
+
φ
n
(
x
0
)
−
f
(
x
0
)
∣
≤
∣
f
(
x
)
−
φ
n
(
x
)
∣
+
∣
φ
n
(
x
)
−
φ
n
(
x
0
)
∣
+
∣
φ
n
(
x
0
)
−
f
(
x
0
)
∣
≤
ε
3
+
ε
3
+
ε
3
=
ε
.
\begin{aligned} \left| f\left( x \right) -f\left( x_0 \right) \right|&=\left| f\left( x \right) -\varphi _n\left( x \right) +\varphi _n\left( x \right) -\varphi _n\left( x_0 \right) +\varphi _n\left( x_0 \right) -f\left( x_0 \right) \right|\\ &\le \left| f\left( x \right) -\varphi _n\left( x \right) \right|+\left| \varphi _n\left( x \right) -\varphi _n\left( x_0 \right) \right|+\left| \varphi _n\left( x_0 \right) -f\left( x_0 \right) \right|\\ &\le \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .\\ \end{aligned}
∣f(x)−f(x0)∣=∣f(x)−φn(x)+φn(x)−φn(x0)+φn(x0)−f(x0)∣≤∣f(x)−φn(x)∣+∣φn(x)−φn(x0)∣+∣φn(x0)−f(x0)∣≤3ε+3ε+3ε=ε.
(3) 对于一般可测函数 f f f, 不妨设其有限. 定义 g ( x ) = f ( x ) 1 + ∣ f ( x ) ∣ g\left( x \right) =\frac{f\left( x \right)}{1+\left| f\left( x \right) \right|} g(x)=1+∣f(x)∣f(x), g g g 成为有界可测函数, 且 ∣ g ∣ < 1 |g|<1 ∣g∣<1. 而 f = g 1 − ∣ g ∣ f = \frac{g}{1-|g|} f=1−∣g∣g, 在 g g g 连续的集合上, f f f 也连续.
【推论2】 对于 Ω \Omega Ω 上 a.e. 有限的可测函数 f f f, 对任意 δ > 0 \delta>0 δ>0, 一定可以找到连续函数 g g g, 使得 μ ( { f ≠ g } ) < δ \mu \left( \left\{ f\ne g \right\} \right) <\delta μ({f=g})<δ. 如果 Ω \Omega Ω 是有界集, 则还可以使得 g g g 具有紧支集.
【推论2’】 对于 Ω \Omega Ω 上 a.e. 有限的可测函数 f f f, 对任意 δ > 0 \delta>0 δ>0, 一定可以找到连续函数 g g g, 使得存在一个闭集 F F F, 在其上 f = g f=g f=g, 且 μ ( Ω − F ) < δ \mu(\Omega-F)<\delta μ(Ω−F)<δ, 此外
s u p R d g ( x ) = s u p F f ( x ) , i n f R d g ( x ) = i n f F f ( x ) . \mathop {\mathrm{sup}} \limits_{\mathbb{R} ^d}g\left( x \right) =\mathop {\mathrm{sup}} \limits_{F}f\left( x \right) ,\quad \mathop {\mathrm{inf}} \limits_{\mathbb{R} ^d}g\left( x \right) =\mathop {\mathrm{inf}} \limits_{F}f\left( x \right) . Rdsupg(x)=Fsupf(x),Rdinfg(x)=Finff(x).
自然, 如果 Ω \Omega Ω 是有界集, F F F 可以是紧的.
【推论3】设 f f f 是 Ω \Omega Ω 上 a.e. 有限的可测函数, 则存在 R d \mathbb{R}^d Rd 上的连续函数列 g n ( x ) g_n(x) gn(x), 使得在 Ω \Omega Ω 上 g n ( x ) → f g_n(x)\to f gn(x)→f, a.e.
证明: 对任意 n n n, 存在 g n ( x ) g_n(x) gn(x), 使得 μ ( { g n ≠ f } ) < 1 n \mu \left( \left\{ g_n\ne f \right\} \right) <\frac{1}{n} μ({gn=f})<n1, 这说明 g n g_n gn 依测度收敛于 f f f. 再根据 Riesz定理取一个几乎处处收敛的子列即可.
μ ( { f ≠ g } ) < δ \mu \left( \left\{ f\ne g \right\} \right) <\delta μ({f=g})<δ. 如果 Ω \Omega Ω 是有界集, 则还可以使得 g g g 具有紧支集.
可积函数与连续函数
可积函数类 L ( Ω ) L(\Omega) L(Ω) 指的是满足 ∫ Ω ∣ f ∣ d μ \int_{\Omega} |f|\mathrm{d}\mu ∫Ω∣f∣dμ 的可测函数全体. 如果 f ∈ L ( Ω ) f\in L(\Omega) f∈L(Ω), 那么它和连续函数之间也有一定关系.
【定理4】若 f ∈ L ( Ω ) f\in L(\Omega) f∈L(Ω), 对任意 ε > 0 \varepsilon>0 ε>0, 存在 R d \mathbb{R}^d Rd 中具有紧支集的连续函数 g ε g_{\varepsilon} gε, s.t.
∫ Ω ∣ f ( x ) − g ε ( x ) ∣ d μ < ε \int_{\Omega}{\left| f\left( x \right) -g_{\varepsilon}\left( x \right) \right|\mathrm{d}\mu}<\varepsilon ∫Ω∣f(x)−gε(x)∣dμ<ε
证明: 考虑具有紧支集的简单函数
φ
(
x
)
\varphi(x)
φ(x), s.t.
∫
Ω
∣
f
(
x
)
−
φ
(
x
)
∣
d
μ
<
ε
2
.
\int_{\Omega}{\left| f\left( x \right) -\varphi \left( x \right) \right|\mathrm{d}\mu}<\frac{\varepsilon}{2}.
∫Ω∣f(x)−φ(x)∣dμ<2ε.
随后不妨设
∣
φ
(
x
)
∣
≤
M
|\varphi(x)|\le M
∣φ(x)∣≤M, 根据鲁津定理的推论, 有具有紧支集的连续函数
g
ε
(
x
)
g_{\varepsilon}(x)
gε(x), 其中
∣
g
ε
∣
≤
M
|g_{\varepsilon}|\le M
∣gε∣≤M, 且
μ
(
A
)
=
μ
(
{
∣
φ
(
x
)
−
g
(
x
)
∣
>
0
}
)
<
ε
4
M
,
\mu \left( A \right) =\mu \left( \left\{ \left| \varphi \left( x \right) -g\left( x \right) \right|>0 \right\} \right) <\frac{\varepsilon}{4M},
μ(A)=μ({∣φ(x)−g(x)∣>0})<4Mε,
因此有
∫
Ω
∣
φ
(
x
)
−
g
ε
(
x
)
∣
d
μ
=
∫
A
∣
φ
(
x
)
−
g
ε
(
x
)
∣
d
μ
≤
2
M
⋅
μ
(
A
)
<
ε
2
.
\int_{\Omega}{\left| \varphi \left( x \right) -g_{\varepsilon}\left( x \right) \right|\mathrm{d}\mu}=\int_A{\left| \varphi \left( x \right) -g_{\varepsilon}\left( x \right) \right|\mathrm{d}\mu}\le 2M\cdot \mu \left( A \right) <\frac{\varepsilon}{2}.
∫Ω∣φ(x)−gε(x)∣dμ=∫A∣φ(x)−gε(x)∣dμ≤2M⋅μ(A)<2ε.
[Remark]: 对于 f ∈ L ( Ω ) f\in L(\Omega) f∈L(Ω), 考虑分解 f = f 1 + f 2 f=f_1+f_2 f=f1+f2, 其中 f 1 f_1 f1 是具有紧支集的连续函数, ∣ f 2 ∣ |f_2| ∣f2∣ 在 Ω \Omega Ω 上的积分小于 ε \varepsilon ε.
下面这个推论是显然的, 只需令定理4中的 ε = 1 / n \varepsilon =1/n ε=1/n, 然后根据推论3 即得.
【推论5】对于 f ∈ L ( Ω ) f\in L(\Omega) f∈L(Ω), 一定存在紧支集的连续函数列 g n ( x ) → f g_n(x) \to f gn(x)→f, a.e., 且使得
∫ Ω ∣ f ( x ) − g n ( x ) ∣ d μ → 0 , n → ∞ . \int_{\Omega} |f(x)-g_n(x)| \mathrm{d}\mu \to 0, \quad n\to \infty. ∫Ω∣f(x)−gn(x)∣dμ→0,n→∞.
【推论6】对于 f ∈ L ( Ω ) f\in L(\Omega) f∈L(Ω), 一定存在紧支撑集的阶梯函数列 φ n ( x ) → f \varphi_n(x) \to f φn(x)→f, a.e., 且使得
∫ Ω ∣ f ( x ) − φ n ( x ) ∣ d μ → 0 , n → ∞ . \int_{\Omega} |f(x)-\varphi_n(x)| \mathrm{d}\mu \to 0, \quad n\to \infty. ∫Ω∣f(x)−φn(x)∣dμ→0,n→∞.
证明: 只需利用 ∣ f ( x ) − φ n ( x ) ∣ ≤ ∣ f ( x ) − g n ( x ) ∣ + ∣ g n ( x ) − φ n ( x ) ∣ \left| f\left( x \right) -\varphi _n\left( x \right) \right|\le \left| f\left( x \right) -g_n\left( x \right) \right|+\left| g_n\left( x \right) -\varphi _n\left( x \right) \right| ∣f(x)−φn(x)∣≤∣f(x)−gn(x)∣+∣gn(x)−φn(x)∣.
构造方式是: 不妨考虑
g
n
(
x
)
g_n(x)
gn(x) 的紧支集是
G
G
G, 它一定含于某个闭方体
E
=
{
x
:
−
k
0
≤
x
i
≤
k
0
,
i
=
1
,
2
,
⋯
,
d
}
E=\{x: -k_0\le x_i\le k_0,i=1,2,\cdots,d \}
E={x:−k0≤xi≤k0,i=1,2,⋯,d}, 一定存在一个阶梯函数
φ
n
(
x
)
=
∑
i
=
1
N
c
i
I
E
i
(
x
)
,
\varphi _n\left( x \right) =\sum_{i=1}^N{c_iI_{E_i}\left( x \right)},
φn(x)=i=1∑NciIEi(x),
其中
E
i
E_i
Ei 是
E
E
E 的子二进方体, 使得
∫
E
∣
g
n
(
x
)
−
φ
n
(
x
)
∣
d
μ
<
ε
2
.
\int_E{\left| g_n\left( x \right) -\varphi _n\left( x \right) \right|\mathrm{d}\mu}<\frac{\varepsilon}{2}.
∫E∣gn(x)−φn(x)∣dμ<2ε.
这样可以取
ε
=
1
/
n
\varepsilon=1/n
ε=1/n 使得
∫
Ω
∣
f
(
x
)
−
φ
n
(
x
)
∣
d
μ
→
0
,
n
→
∞
\int_{\Omega} |f(x)-\varphi_n(x)| \mathrm{d}\mu \to 0, \quad n\to \infty
∫Ω∣f(x)−φn(x)∣dμ→0,n→∞. 至于几乎处处收敛性, 有
μ
(
{
∣
f
(
x
)
−
φ
n
(
x
)
∣
>
σ
}
)
≤
1
σ
∫
Ω
∣
f
(
x
)
−
φ
n
(
x
)
∣
d
μ
→
0
,
\mu \left( \left\{ \left| f\left( x \right) -\varphi _n\left( x \right) \right|>\sigma \right\} \right) \le \frac{1}{\sigma}\int_{\Omega}{\left| f\left( x \right) -\varphi _n\left( x \right) \right|\mathrm{d}\mu}\rightarrow 0,
μ({∣f(x)−φn(x)∣>σ})≤σ1∫Ω∣f(x)−φn(x)∣dμ→0,
即依测度收敛, 再根据 Riesz 定理取一个子列使得 a.e. 收敛成立.