$L^p$ 空间: 完备性与可分性

L p L^p Lp 空间: 不等式与性质

【定义0】( L p L^p Lp 空间) 设 Ω \Omega Ω R n R^n Rn 的开子集, μ \mu μ 是勒贝格测度, 定义 L p ( Ω ) = { f : Ω → R , 可测且 ∥ f ∥ L p < ∞ } . L^p\left( \Omega \right) =\left\{ f:\Omega \rightarrow R,\text{可测且}\left\| f \right\| _{L^p}<\infty \right\} . Lp(Ω)={f:ΩR,可测且fLp<}. 这里, 范数定义为 ∥ f ∥ L p = { ( ∫ Ω ∣ f ∣ p d μ ) 1 p , 1 ≤ p < ∞ , e s s s u p Ω ∣ f ∣ , p = ∞ . \left\| f \right\| _{L^p}=\begin{cases} \left( \int_{\Omega}{\left| f \right|^p\mathrm{d}\mu} \right) ^{\frac{1}{p}},& 1\le p<\infty ,\\ \mathop {\mathrm{esssup}} \limits_{\Omega}\left| f \right|,& p=\infty .\\ \end{cases} fLp= (Ωfpdμ)p1,Ωesssupf,1p<,p=∞.

[Remark]: 本性上确界 e s s s u p \mathrm{esssup} esssup 指的是最小的“本性上界”, “本性上界”则指除了一个零测集里的点比该值大以外, 其余值都不超过它.

[Remark]: 如果 μ ( Ω ) < ∞ \mu(\Omega)<\infty μ(Ω)<, 那么 lim ⁡ p → ∞ ∥ f ∥ L p = ∥ f ∥ L ∞ \lim \limits_{p\to\infty}\left\| f\right\|_{L^p}=\left\| f\right\|_{L^{\infty}} plimfLp=fL. 不妨记右侧为 M M M, 一方面 ∥ f ∥ L p ≤ ( ∫ Ω M p d μ ) 1 / p = M ( μ ( Ω ) ) 1 / p \left\| f \right\| _{L^p}\le \left( \int_{\Omega}{M^p\mathrm{d}\mu} \right) ^{1/p}=M (\mu(\Omega))^{1/p} fLp(ΩMpdμ)1/p=M(μ(Ω))1/p, 取极限得 lim ⁡ ‾ p → ∞ ∥ f ∥ L p ≤ M \mathop {\overline{\lim }} \limits_{p\rightarrow \infty}\left\| f \right\| _{L^p}\le M plimfLpM. 另一方面, 设 M n ↑ M M_n \uparrow M MnM, 记
A n = { ∣ f ( x ) ∣ > M n } , A_n=\left\{ \left| f\left( x \right) \right|>M_n \right\}, An={f(x)>Mn},
则有 ∥ f ∥ L p = ( ∫ Ω ∣ f ∣ p d μ ) 1 / p ≥ M n ( μ ( A n ) ) 1 / p \left\| f \right\| _{L^p}=\left( \int_{\Omega}{\left| f \right|^p\mathrm{d}\mu} \right) ^{1/p}\ge M_n\left( \mu \left( A_n \right) \right) ^{1/p} fLp=(Ωfpdμ)1/pMn(μ(An))1/p, 令 p → ∞ p\to \infty p, 有 lim ⁡ ‾ p → ∞ ∥ f ∥ L p ≥ M n \mathop {\underline{\lim }} \limits_{p\rightarrow \infty}\left\| f \right\| _{L^p}\ge M_n plimfLpMn, 令 n → ∞ n \to \infty n lim ⁡ ‾ p → ∞ ∥ f ∥ L p ≥ M \mathop {\underline{\lim }} \limits_{p\rightarrow \infty}\left\| f \right\| _{L^p}\ge M plimfLpM. 综上所述 lim ⁡ p → ∞ ∥ f ∥ L p = ∥ f ∥ L ∞ \lim \limits_{p\to\infty}\left\| f\right\|_{L^p}=\left\| f\right\|_{L^{\infty}} plimfLp=fL.


【推论1】 L p ( Ω ) L^p(\Omega) Lp(Ω) 是线性空间.

提示: 设 f , g ∈ L p f,g\in L^p f,gLp, 若 p < ∞ p<\infty p<, 有
∥ a f + b g ∥ L p p ≤ 2 p ( ∣ a ∣ p ∥ f ∥ L p p + ∣ b ∣ p ∥ g ∥ L p p ) . \left\| af+bg \right\| _{L^p}^{p}\le 2^p\left( \left| a \right|^p\left\| f \right\| _{L^p}^{p}+\left| b \right|^p\left\| g \right\| _{L^p}^{p} \right) . af+bgLpp2p(apfLpp+bpgLpp).

p = ∞ p=\infty p=, 有
∥ a f + b g ∥ L ∞ ≤ ∣ a ∣ ∥ f ∥ L ∞ + ∣ b ∣ ∥ g ∥ L ∞ . \left\| af+bg \right\| _{L^{\infty}}\le \left| a \right|\left\| f \right\| _{L^{\infty}}+\left| b \right|\left\| g \right\| _{L^{\infty}}. af+bgLafL+bgL.

【定理2】(Holder不等式) ∫ Ω ∣ f g ∣ d μ ≤ ( ∫ Ω ∣ f ∣ p d μ ) 1 p ( ∫ Ω ∣ g ∣ q d μ ) 1 q = ∥ f ∥ L p ∥ g ∥ L q \int_{\Omega}{\left| fg \right|\mathrm{d}\mu}\le \left( \int_{\Omega}{\left| f \right|^p\mathrm{d}\mu} \right) ^{\frac{1}{p}}\left( \int_{\Omega}{\left| g \right|^q\mathrm{d}\mu} \right) ^{\frac{1}{q}}=\left\| f \right\| _{L^p}\left\| g \right\| _{L^q} Ωfgdμ(Ωfpdμ)p1(Ωgqdμ)q1=fLpgLq, 这里 1 / p + 1 / q = 1 1/p+1/q=1 1/p+1/q=1.

【定理3】(Minkowski 不等式) ∥ f + g ∥ L p ≤ ∥ f ∥ L p + ∥ g ∥ L p \left\| f+g \right\| _{L^p}\le \left\| f \right\| _{L^p}+\left\| g \right\| _{L^p} f+gLpfLp+gLp, 这里 p ≥ 1 p\ge 1 p1;

【推论4】 L p ( Ω ) L^p(\Omega) Lp(Ω) 是 Banach 空间.

证明: 根据 Mikowski 不等式, L p ( Ω ) L^p(\Omega) Lp(Ω) 显然是赋范线性空间, 其距离定义为 d ( f , g ) = ∥ f − g ∥ L p d(f,g)=\left\|f-g\right\|_{L^p} d(f,g)=fgLp. 现只需证明完备性. 假设 { f n } \{f_n\} {fn} L p ( Ω ) L^p(\Omega) Lp(Ω) 中柯西列, 则 ∥ f n − f m ∥ L p → 0 \left\| f_n-f_m \right\| _{L^p}\to 0 fnfmLp0, 先考虑 1 ≤ p < ∞ 1\le p<\infty 1p<, 记 E n , m = { x ∈ Ω : ∣ f n − f m ∣ > ε } E_{n,m}=\left\{ x\in \Omega :\left| f_{n}-f_{m} \right|>\varepsilon \right\} En,m={xΩ:fnfm>ε}, 则有
μ ( E n , m ) ≤ 1 ε p ∫ Ω ∣ f n − f m ∣ p d μ = 1 ε p ∥ f n − f m ∥ L p p → 0 , \mu \left( E_{n,m} \right) \le \frac{1}{\varepsilon ^p}\int_{\Omega}{\left| f_n-f_m \right|^p\mathrm{d}\mu}=\frac{1}{\varepsilon ^p}\left\| f_n-f_m \right\| _{L^p}^{p}\rightarrow 0, μ(En,m)εp1Ωfnfmpdμ=εp1fnfmLpp0,
{ f n } \{f_{n}\} {fn} 是依概率柯西列, 一定存在 Ω \Omega Ω 上的函数 f f f 使得 f n → μ f f_{n}\xrightarrow{\mu}f fnμ f. 根据 Riesz 定理, 存在一个子列 { f n k } \{f_{n_k}\} {fnk} 几乎处处收敛于 f f f. 因此有
∥ f n − f ∥ L p p = ∥ lim ⁡ k → ∞ ( f n − f n k ) ∥ L p p ≤ lim ⁡ ‾ k → ∞ ∥ f n − f n k ∥ L p p → 0 , n → ∞ . \left\| f_n-f \right\| _{L^p}^{p}=\left\| \lim_{k\rightarrow \infty} \left( f_n-f_{n_k} \right) \right\| _{L^p}^{p}\le \mathop {\underline{\lim }} \limits_{k\rightarrow \infty}\left\| f_n-f_{n_k} \right\| _{L^p}^{p}\to 0,\quad n\to \infty. fnfLpp= klim(fnfnk) LppklimfnfnkLpp0,n∞.
接下去只需说明 f ∈ L p ( Ω ) f\in L^p(\Omega) fLp(Ω), 这是平凡的, 由 Mikowski不等式, 有 ∥ f ∥ L p ≤ ∥ f − f n ∥ L p + ∥ f n ∥ L p ≤ ∞ \left\| f \right\| _{L^p}\le \left\| f-f_n \right\| _{L^p}+\left\| f_n \right\| _{L^p}\le \infty fLpffnLp+fnLp.

再考虑 p = ∞ p=\infty p=, 设 A m , n = { x : ∣ f m ( x ) − f n ( x ) ∣ > ∥ f m − f n ∥ L ∞ } A_{m,n}=\{x:|f_m(x)-f_n(x)|>\left\|f_m-f_n\right\|_{L^{\infty}}\} Am,n={x:fm(x)fn(x)>fmfnL}, 以及 A = ⋃ m , n A m , n A=\bigcup_{m,n} A_{m,n} A=m,nAm,n, 显然 A A A 是零测集, 后续我们均在 Ω − A \Omega -A ΩA 中讨论, 因此不妨重令 Ω = Ω − A \Omega =\Omega-A Ω=ΩA. 此时存在一子列
∑ k = 1 ∞ ∣ f n k + 1 − f n k ∣ ≤ ∑ k = 1 ∞ ∥ f n k + 1 − f n k ∥ L ∞ < ∞ , \sum_{k=1}^{\infty}{\left| f_{n_{k+1}}-f_{n_k} \right|}\le \sum_{k=1}^{\infty}{\left\| f_{n_{k+1}}-f_{n_k} \right\| _{L^{\infty}}}<\infty , k=1fnk+1fnkk=1fnk+1fnkL<,
因此有 f n 1 + ∑ k = 1 ∞ ( f n k + 1 − f n k ) f_{n_1}+\sum_{k=1}^{\infty}{\left( f_{n_{k+1}}-f_{n_k} \right)} fn1+k=1(fnk+1fnk) 绝对收敛, 即存在 Ω \Omega Ω 上函数, 使得 f n k → f f_{n_k}\to f fnkf. 因此有

综上所述, 存在子列 f n k → a . e . f f_{n_k} \xrightarrow{\mathrm{a}.\text{e}.}f fnka.e. f. 因此有
∣ f n − f ∣ = ∣ lim ⁡ k → ∞ ( f n − f n k ) ∣ ≤ lim ⁡ ‾ k → ∞ ∣ f n − f n k ∣ → 0 , n → ∞ , \left| f_n-f \right|=\left| \lim_{k\rightarrow \infty} \left( f_n-f_{n_k} \right) \right|\le \mathop {\underline{\lim }} \limits_{k\rightarrow \infty}\left| f_n-f_{n_k} \right|\rightarrow 0,\quad n\rightarrow \infty , fnf= klim(fnfnk) klimfnfnk0,n,
同理, 有 ∣ f ∣ ≤ ∣ f − f n ∣ + ∣ f n ∣ < ∞ \left| f \right|\le \left| f-f_n \right|+\left| f_n \right|<\infty fffn+fn<.

【定义5】(稠密与可分) 设 Γ \Gamma Γ L p ( Ω ) L^p(\Omega) Lp(Ω) 的子集, 若对任意 f ∈ L p ( Ω ) f\in L^p(\Omega) fLp(Ω) ε > 0 \varepsilon>0 ε>0, 存在 g ∈ Γ g\in \Gamma gΓ, s.t., ∥ f − g ∥ L p < ε \left\| f-g \right\|_{L^p}<\varepsilon fgLp<ε, 则称 Γ \Gamma Γ 是稠密的. 如果 L p ( Ω ) L^p(\Omega) Lp(Ω) 中存在元素个数为可数的稠密子集, 则称 L p ( Ω ) L^p(\Omega) Lp(Ω) 可分.

[Remark]: 例如 Q \mathbb{Q} Q R \mathbb{R} R 的可数稠密子集. 一个空间可分意味着我们总能找到一个可数的稠密子集来靠近它当中的任意一个函数.

【推论6】 L p ( Ω ) L^p(\Omega) Lp(Ω) 是可分空间, 其中 p < ∞ p<\infty p<.

证明: 设 f ∈ L p ( R d ) f\in L^p(\mathbb{R}^d) fLp(Rd), 考虑有紧支集的阶梯函数, 使得
∥ f − φ ∥ L p p < ε / 2 , \left\| f-\varphi \right\| _{L^p}^{p}<\varepsilon/2, fφLpp<ε/2,
其中 φ ( x ) = ∑ i = 1 m c i I A i ( x ) \varphi \left( x \right) =\sum_{i=1}^m{c_iI_{A_i}\left( x \right)} φ(x)=i=1mciIAi(x). 不妨设 ∣ c i ∣ ≤ M |c_i|\le M ciM, μ ( A i ) ≤ M p \mu(A_i)\le M^p μ(Ai)Mp, 则尝试找 r i r_i ri, 使得
∣ r i − c i ∣ ≤ ε 2 m M , i = 1 , 2 , ⋯   , m , \left| r_i-c_i \right|\le \frac{\varepsilon}{2mM},\quad i=1,2,\cdots ,m, rici2mMε,i=1,2,,m,
并令 ψ ( x ) = ∑ i = 1 m r i I A i ( x ) \psi \left( x \right) =\sum_{i=1}^m{r_iI_{A_i}\left( x \right)} ψ(x)=i=1mriIAi(x), 则有
∥ ψ − φ ∥ L p ≤ ∑ i = 1 m ∣ r i − c i ∣ ( μ ( A i ) ) 1 / p ≤ ε 2 . \left\| \psi -\varphi \right\| _{L^p}\le \sum_{i=1}^m{\left| r_i-c_i \right|\left( \mu \left( A_i \right) \right) ^{1/p}}\le \frac{\varepsilon}{2}. ψφLpi=1mrici(μ(Ai))1/p2ε.
而形如 ψ \psi ψ 的阶梯函数全体 Γ \Gamma Γ 是一个可数稠密子集, 故 L p ( R d ) L^p(\mathbb{R}^d) Lp(Rd) 可分. 进一步考虑 L p ( Ω ) L^p(\Omega) Lp(Ω), 其中 Ω ⊂ R d \Omega \subset \mathbb{R}^d ΩRd, 且 1 ≤ p < ∞ 1\le p<\infty 1p<, 则取 L p ( R d ) L^p(\mathbb{R}^d) Lp(Rd) 中函数 f 1 ( x ) = f ( x ) I Ω ( x ) f_1(x)=f(x)I_{\Omega}(x) f1(x)=f(x)IΩ(x), 则存在 ψ 1 ( x ) ∈ Γ \psi_1(x) \in \Gamma ψ1(x)Γ 满足条件. 再设 ψ ( x ) = ψ 1 ( x ) ∣ Ω \psi(x) = \psi_1(x)|_{\Omega} ψ(x)=ψ1(x)Ω, 它的全体组成的集合 Γ 1 \Gamma_1 Γ1 也是可数稠密子集, 且满足条件, 故 L p ( Ω ) L^p(\Omega) Lp(Ω) 是可分的.

[Remark]: 因为找到紧支集阶梯函数来逼近时需要 p < ∞ p<\infty p<, 故 L ∞ ( Ω ) L^{\infty}(\Omega) L(Ω) 不能被如此证明是可分的, 事实上 L ∞ ( Ω ) L^{\infty}(\Omega) L(Ω) 不可分. 反例: 设 L ∞ ( ( 0 , 1 ) ) L^{\infty}((0,1)) L((0,1)), 如果能够找到一个子集函数类 F \mathcal{F} F, 它不可数, 且各自之间都有一定的距离, 那么就不可能找到可数个函数来靠近这不可数个函数, 考虑函数类 f t ( x ) = I ( 0 , t ) ( x ) f_t(x)=I_{(0,t)}(x) ft(x)=I(0,t)(x), 其中 t ∈ ( 0 , 1 ) t\in (0,1) t(0,1), 它不可数, 则只要 t 1 ≠ t 2 t_1\neq t_2 t1=t2, 就有
∥ f t 1 − f t 2 ∥ L ∞ = 1. \left\| f_{t_1}-f_{t_2} \right\| _{L^{\infty}}=1. ft1ft2L=1.

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值