【机器学习】深度学习发展回顾

Ups and downs of Deep Learning

1958年 感知机(Perceptron:linear model)被提出
1958年 发现了感知机的局限性
1980s年 提出了多层感知机(Multi-layer perceptron):与今天的深度神经网络没有太大差异
1986年 反向传播(Backpropagation)被提出:但隐藏层如果超过3层,结果就不会很好
1989年 是否一层的隐藏层就足够好了,为什么要进行深度
2006年 提出了受限玻尔兹曼机(RBM),使得Deep Learning再次火起来
2009年 利用GPU加速
2011年 被引入语音辨识中
2012年 赢得了 ImageNet大赛(AlexNet:8层(16.4%))
2014年 ImageNet:VGG:19层(7.3%)、GoogleNet:22层(6.7%)
2015年 ImageNet:Residual Net:152层(3.57%)

Three Steps for Deep Learning

第一步:定义一个函数集(define a set of function):Neural network
第二步:找一个损失函数(goodness of function):Loss function
第三步:找最优的函数(pick the best function):Optimizer(Gradient Descent)

参考资料 :台大李宏毅教授机器学习课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值