Ups and downs of Deep Learning
1958年 感知机(Perceptron:linear model)被提出
1958年 发现了感知机的局限性
1980s年 提出了多层感知机(Multi-layer perceptron):与今天的深度神经网络没有太大差异
1986年 反向传播(Backpropagation)被提出:但隐藏层如果超过3层,结果就不会很好
1989年 是否一层的隐藏层就足够好了,为什么要进行深度
2006年 提出了受限玻尔兹曼机(RBM),使得Deep Learning再次火起来
2009年 利用GPU加速
2011年 被引入语音辨识中
2012年 赢得了 ImageNet大赛(AlexNet:8层(16.4%))
2014年 ImageNet:VGG:19层(7.3%)、GoogleNet:22层(6.7%)
2015年 ImageNet:Residual Net:152层(3.57%)
Three Steps for Deep Learning
第一步:定义一个函数集(define a set of function):Neural network
第二步:找一个损失函数(goodness of function):Loss function
第三步:找最优的函数(pick the best function):Optimizer(Gradient Descent)
参考资料 :台大李宏毅教授机器学习课程